A291071 Number of 5 X n binary matrices that are "primitive"; that is, they cannot be expressed as a "tiling" by a smaller matrix.
54, 3966, 261522, 16768860, 1073708010, 68718945018, 4398044397642, 281474943095280, 18014398374741048, 1152921502458345570, 73786976286244079562, 4722366482732172984420, 302231454903107470761930, 19342813113825270435966978, 1237940039285345088379356750
Offset: 1
Keywords
Links
- Guilhem Gamard, Gwenaël Richomme, Jeffrey Shallit, Taylor J. Smith, Periodicity in rectangular arrays, arXiv:1602.06915 [cs.DM], 2016; Information Processing Letters 118 (2017) 58-63. See Table 1.
Programs
-
Mathematica
Psi[k_, m_, n_] := Sum[MoebiusMu[dm] MoebiusMu[dn] k^(m n/dm/dn), {dm, Divisors[m] }, {dn, Divisors[n]}]; Table[Psi[2, 6, n], {n, 1, 15}] (* Jean-François Alcover, Aug 10 2018, after Lars Blomberg *)
-
PARI
Psi(k,m,n) = v1=divisors(m); v2=divisors(n); sum(i1=1,length(v1),sum(i2=1,length(v2),moebius(v1[i1])*moebius(v2[i2])*k^(m*n/v1[i1]/v2[i2]))); vector(15,n,Psi(2,6,n)) \\ Lars Blomberg, Aug 19 2017
Extensions
a(8)-a(15) from Lars Blomberg, Aug 19 2017