A291072 Take n-th string over {1,2} in lexicographic order and apply the Watanabe tag system {00, 1011} described in A291067 (but adapted to the alphabet {1,2}) just once.
-1, 22, 1, 1, 122, 122, 11, 11, 11, 11, 2122, 2122, 2122, 2122, 111, 211, 111, 211, 111, 211, 111, 211, 12122, 22122, 12122, 22122, 12122, 22122, 12122, 22122, 1111, 1211, 2111, 2211, 1111, 1211, 2111, 2211, 1111, 1211, 2111, 2211, 1111, 1211, 2111, 2211, 112122, 122122, 212122, 222122
Offset: 1
Keywords
Programs
-
Maple
# First define the mapping by defining the strings T1 and T2: # Work over the alphabet {1,2} # 11 / 2212 A284116 This is the "Post Tag System" T1:="11"; T2:="2212"; # 11 / 2122 A291067 These three are from the Watanabe paper T1:="11"; T2:="2122"; # 11 / 2221 A291068 T1:="11"; T2:="2221"; # 11 / 1222 A291069 T1:="11"; T2:="1222"; with(StringTools): # the mapping: f1:=proc(w) local L, ws, w2; global T1,T2; ws:=convert(w, string); if ws="-1" then return("-1"); fi; if ws[1]="1" then w2:=Join([ws, T1], ""); else w2:=Join([ws, T2], ""); fi; L:=length(w2); if L <= 3 then return("-1"); fi; w2[4..L]; end; # Construct list of words over {1,2} (A007931) a:= proc(n) local m, r, d; m, r:= n, 0; while m>0 do d:= irem(m, 2, 'm'); if d=0 then d:=2; m:= m-1 fi; r:= d, r od; parse(cat(r))/10 end: WLIST := [seq(a(n), n=1..100)]; # apply the map once: # this produces A289673, A291072, A291073, A291074 W2:=map(f1,WLIST);