A291086 Irregular triangle read by rows: T(n,m) = number of lattice paths of type {B^Q}_R terminating at point (n, m).
1, 1, 1, 1, 3, 4, 4, 2, 1, 11, 17, 18, 13, 8, 3, 1, 46, 76, 85, 72, 51, 28, 13, 4, 1, 207, 355, 415, 384, 300, 196, 110, 50, 19, 5, 1, 977, 1716, 2076, 2034, 1705, 1236, 785, 430, 204, 80, 26, 6, 1, 4769, 8519, 10584, 10801, 9541, 7426, 5145, 3165, 1729, 826, 343, 119, 34, 7, 1
Offset: 0
Examples
Triangle begins: 1, 1,1,1, 3,4,4,2,1, 11,17,18,13,8,3,1, 46,76,85,72,51,28,13,4,1, 207,355,415,384,300,196,110,50,19,5,1, 977,1716,2076,2034,1705,1236,785,430,204,80,26,6,1, 4769,8519,10584,10801,9541,7426,5145,3165,1729,826,343,119,34,7,1, ...
Links
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
Crossrefs
First column is A291090.