A291093 Form the list of fractions with nontrivial anomalous cancellation, sorted first by denominators, then by numerators; sequence lists the numerators.
16, 26, 19, 49, 11, 12, 22, 13, 33, 34, 14, 44, 15, 55, 16, 64, 66, 17, 77, 18, 88, 19, 95, 96, 97, 39, 49, 98, 99, 101, 102, 103, 104, 21, 22, 121, 23, 33, 132, 34, 136, 24, 44, 143, 25, 55, 154, 26, 65, 66, 165, 106, 67, 27, 77, 176, 28, 88, 187, 29
Offset: 1
Examples
The first two terms correspond to the fractions 16/64 = 1/4 (cancel the 6!) and 26/65 = 2/5 (again cancel the 6!). The first 20 fractions are (before cancellation) 16/64, 26/65, 19/95, 49/98, 11/110, 12/120, 22/121, 13/130, 33/132, 34/136, 14/140, 44/143, 15/150, 55/154, 16/160, 64/160, 66/165, 17/170, 77/176, 18/180, which equal (after cancellation) 1/4, 2/5, 1/5, 1/2, 1/10, 1/10, 2/11, 1/10, 1/4, 1/4, 1/10, 4/13, 1/10, 5/14, 1/10, 2/5, 2/5, 1/10, 7/16, 1/10.
References
- R. P. Boas, "Anomalous Cancellation." Ch. 6 in Mathematical Plums (Ed. R. Honsberger). Washington, DC: Math. Assoc. Amer., pp. 113-129, 1979.
- A. Moessner, Scripta Math. 19; 20.
- C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory. New York: Dover, 1988, pp. 86-87.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..8544 (numerators for denominators d <= 10^4; first 169 terms from N. J. A. Sloane)
- Michael De Vlieger, Correlation of A291093 and A291094 and their ratio (all denominators d <= 10^4)
- B. L. Schwartz, Proposal 434, Mathematics Magazine Vol. 34, No. 3 (1961), Problems and Questions, p. 173.
- N. J. A. Sloane, Maple program.
- N. J. A. Sloane, List of first 169 fractions (file gives line number, numerator, denominator).
- Eric W. Weisstein, Anomalous Cancellation.
Programs
-
Mathematica
Flatten@ Table[Select[Range[11, m - 1], Function[k, Function[{r, w, n, d}, AnyTrue[Flatten@ Map[Apply[Outer[Divide, #1, #2] &, #] &, Transpose@ MapAt[# /. 0 -> Nothing &, Map[Function[x, Map[Map[FromDigits@ Delete[x, #] &, Position[x, #]] &, Intersection @@ {n, d}]], {n, d}], -1]], # == Divide @@ {k, m} &]] @@ {k/m, #, First@ #, Last@ #} &@ Map[IntegerDigits, {k, m}] - Boole[Mod[{k, m}, 10] == {0, 0}]]], {m, 290}] (* Michael De Vlieger, Sep 13 2017 *)
Comments