cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291094 Denominators of fractions with nontrivial anomalous cancellation, listed with multiplicity if multiple numerators are possible.

This page as a plain text file.
%I A291094 #47 Feb 16 2025 08:33:50
%S A291094 64,65,95,98,110,120,121,130,132,136,140,143,150,154,160,160,165,170,
%T A291094 176,180,187,190,190,192,194,195,196,196,198,202,204,206,208,210,220,
%U A291094 220,230,231,231,238,238,240,242,242,250
%N A291094 Denominators of fractions with nontrivial anomalous cancellation, listed with multiplicity if multiple numerators are possible.
%C A291094 An unreduced fraction N/D is said to have the anomalous cancellation property if there is a single digit that can be canceled from both N and D without changing the value of the fraction. The first and most famous example is 16/64 = 1/4 after canceling the 6's.
%C A291094 Nontrivial means that fractions of the form x0/y0 are excluded (otherwise there would be a large number of trivial entries like 120/340).
%C A291094 The fractions are assumed to be in the range 0 to 1, and of course are not reduced.
%C A291094 The denominators d are considered in the order 11, 12, 13, ..., and then the numerators are considered in the order n = 10, 11, 12, ..., d-1.
%C A291094 A fraction is listed only once, even if the cancellation is possible in more than one way.
%C A291094 From _Jon E. Schoenfield_, Sep 12 2017: (Start)
%C A291094 For k = 1..12, the smallest denominator D that appears exactly k times and its corresponding numerators are as follows:
%C A291094 .
%C A291094    k     D  numerators
%C A291094   ==  ====  ================================================
%C A291094    1    64  16
%C A291094    2   160  16  64
%C A291094    3   294  49  98 196
%C A291094    4   392  49  98 196 294
%C A291094    5   490  49  98 196 294 392
%C A291094    6   660  66 165 264 363 462 561
%C A291094    7   770  77 176 275 374 473 572 671
%C A291094    8   880  88 187 286 385 484 583 682 781
%C A291094    9   990  99 198 297 396 495 594 693 792 891
%C A291094   10  1980  99 198 297 396 495 594 693 792 891 990
%C A291094   11  2970  99 198 297 396 495 594 693 792 891 990 1980
%C A291094   12  3960  99 198 297 396 495 594 693 792 891 990 1980 2970
%C A291094 Smallest denominator that appears exactly k times in the sequence for k = 1..41: 64, 160, 294, 392, 490, 660, 770, 880, 990, 1980, 2970, 3960, 4950, 5830, 6710, 7920, 8910, 9900, 11940, 12935, 13065, 14925, 15920, 16080, 16915, 18905, 19095, 23952, 24950, 25948, 26052, 24309, 28942, 29940, 29058, 31396, 32934, 34068, 33932, 35928, 36926 (note that this sequence is nonmonotonic; e.g., its 29th and 32nd terms are 24950 and 24309, respectively).
%C A291094 (End)
%D A291094 R. P. Boas, "Anomalous Cancellation." Ch. 6 in Mathematical Plums (Ed. R. Honsberger). Washington, DC: Math. Assoc. Amer., pp. 113-129, 1979.
%D A291094 A. Moessner, Scripta Math. 19; 20.
%D A291094 C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory. New York: Dover, 1988, pp. 86-87.
%H A291094 Michael De Vlieger, <a href="/A291094/b291094.txt">Table of n, a(n) for n = 1..8544</a> (denominators d <= 10^4; first 169 terms from N. J. A. Sloane)
%H A291094 Michael De Vlieger, <a href="/A291094/a291094.txt">Correlation of A291093 and A291094 and their ratio</a> (for denominators d <= 10^4)
%H A291094 B. L. Schwartz, <a href="http://doi.org/10.2307/2688504">Proposal 434</a>, Mathematics Magazine Vol. 34, No. 3 (1961), Problems and Questions, p. 173.
%H A291094 N. J. A. Sloane, <a href="/A291093/a291093.txt">Maple program</a>.
%H A291094 N. J. A. Sloane, <a href="/A291093/a291093_1.txt">List of first 169 fractions</a> (file gives line number, numerator, denominator).
%H A291094 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/AnomalousCancellation.html">Anomalous Cancellation</a>.
%e A291094 The first two terms correspond to the fractions 16/64 = 1/4 (cancel the 6!) and 26/65 = 2/5 (again cancel the 6!).
%e A291094 The first 20 fractions are (before cancellation) 16/64, 26/65, 19/95, 49/98, 11/110, 12/120, 22/121, 13/130, 33/132, 34/136, 14/140, 44/143, 15/150, 55/154, 16/160, 64/160, 66/165, 17/170, 77/176, 18/180, which equal (after cancellation) 1/4, 2/5, 1/5, 1/2, 1/10, 1/10, 2/11, 1/10, 1/4, 1/4, 1/10, 4/13, 1/10, 5/14, 1/10, 2/5, 2/5, 1/10, 7/16, 1/10.
%t A291094 Flatten@ Table[ConstantArray[m, Count[Range[11, m - 1], _?(Function[k, Function[{r, n, d}, AnyTrue[Flatten@ Map[Apply[Outer[Divide, #1, #2] &, #] &, Transpose@ MapAt[# /. 0 -> Nothing &, Map[Function[x, Map[Map[FromDigits@ Delete[x, #] &, Position[x, #]] &, Intersection @@ {n, d}]], {n, d}], -1]], # == Divide @@ {k, m} &]] @@ {k/m, #, First@ #, Last@ #} &@ Map[IntegerDigits, {k, m}] - Boole[Mod[{k, m}, 10] == {0, 0}]])]], {m, 250}] (* _Michael De Vlieger_, Sep 13 2017 *)
%Y A291094 See A291093 for numerators.
%Y A291094 Cf. A159975/A159976, A290462/A290463.
%Y A291094 Cf. A291965/A291966 for a variant.
%Y A291094 Cf. A367206, A367207.
%K A291094 nonn,frac,base
%O A291094 1,1
%A A291094 _N. J. A. Sloane_, Aug 21 2017