This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291104 #12 Feb 16 2025 08:33:50 %S A291104 1,6,48,632,10130,194292,4730810,145114944,5529662802,256094790500, %T A291104 14038667879522,890349688082736,64160617557387338,5183023418382933060, %U A291104 464623151635449639450,45857185726197195813632,4951604249874284663582498,581839639424819461006405956 %N A291104 Number of maximal irredundant sets in the n X n rook graph. %H A291104 Andrew Howroyd, <a href="/A291104/b291104.txt">Table of n, a(n) for n = 1..100</a> %H A291104 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIrredundantSet.html">Maximal Irredundant Set</a> %H A291104 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a> %F A291104 a(n) = 2*n^n - n! + Sum_{k=2..n-2} Sum_{j=2..n-k} binomial(n,k) * binomial(n,j) * k! * A008299(n-j,k-1) * j! * stirling2(n-k,j-1). - _Andrew Howroyd_, Aug 25 2017 %t A291104 (* Start *) %t A291104 s[n_, k_] := Sum[(-1)^i Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}] %t A291104 p[m_, n_, x_] := Sum[Binomial[m, k] Binomial[n, j] k! s[n - j, k - 1] j! StirlingS2[m - k, j - 1] x^(m + n - j - k), {k, 2, m - 2}, {j, 2, m - k}] %t A291104 a[n_] := 2 n^n - n! + p[n, n, 1] %t A291104 Array[a, 20] %t A291104 (* End *) %o A291104 (PARI) \\ here s(n, k) is A008299, 2*n^n - n! is A248744. %o A291104 s(n, k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); %o A291104 p(m, n, x)={sum(k=2, m-2, sum(j=2, m-k, binomial(m, k) * binomial(n, j) * k! * s(n-j, k-1) * j! * stirling(m-k, j-1, 2) * x^(m+n-j-k) ))} %o A291104 a(n) = 2*n^n - n! + p(n,n,1); \\ _Andrew Howroyd_, Aug 25 2017 %Y A291104 Main diagonal of A291543. %Y A291104 Cf. A008299, A248744, A290586. %K A291104 nonn %O A291104 1,2 %A A291104 _Eric W. Weisstein_, Aug 17 2017 %E A291104 Terms a(5) and beyond from _Andrew Howroyd_, Aug 25 2017