This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291111 #9 Dec 29 2020 09:04:26 %S A291111 0,0,0,0,0,24,864,24192,653184,18144000,531365184,16563076992, %T A291111 551172885120,19580825392128,741547690884000,29873618711000064, %U A291111 1277121733631347968,57795924098354577408,2762004604309125452928,139058300756829929472000,7359536118308288021017344 %N A291111 Number of endofunctions on [n] such that the LCM of their cycle lengths equals five. %H A291111 Alois P. Heinz, <a href="/A291111/b291111.txt">Table of n, a(n) for n = 0..387</a> %F A291111 a(n) ~ (2*exp(6/5)-exp(1)) * n^(n-1). - _Vaclav Kotesovec_, Aug 18 2017 %p A291111 b:= proc(n, m) option remember; (k-> `if`(m>k, 0, %p A291111 `if`(n=0, `if`(m=k, 1, 0), add(b(n-j, ilcm(m, j)) %p A291111 *binomial(n-1, j-1)*(j-1)!, j=1..n))))(5) %p A291111 end: %p A291111 a:= n-> add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n): %p A291111 seq(a(n), n=0..22); %t A291111 b[n_, m_] := b[n, m] = With[{k = 5}, If[m > k, 0, If[n == 0, If[m == k, 1, 0], Sum[b[n-j, LCM[m, j]] Binomial[n-1, j-1] (j-1)!, {j, 1, n}]]]]; %t A291111 a[n_] := If[n == 0, 0, Sum[b[j, 1] n^(n-j) Binomial[n-1, j-1], {j, 0, n}]]; %t A291111 a /@ Range[0, 22] (* _Jean-François Alcover_, Dec 29 2020, after _Alois P. Heinz_ *) %Y A291111 Column k=5 of A222029. %K A291111 nonn %O A291111 0,6 %A A291111 _Alois P. Heinz_, Aug 17 2017