This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291120 #16 Aug 18 2017 23:31:09 %S A291120 1,2,2,1,1,1,3,3,2,1,1,1,6,9,7,4,2,1,1,13,30,29,18,9,4,1,1,27,100,129, %T A291120 92,48,21,7,1,1,55,324,581,504,287,129,47,11,1,1,111,1024,2577,2834, %U A291120 1844,879,338,97,16,1,1,223,3180,11189,15918,12301,6431,2615,837,184,22,1,1,447,9760,47649,88232,83050,49197,21498,7430,1928,324,29,1,1,895,29724,199781,481044,558819,384913,184823,68606,19868,4123,536,37,1 %N A291120 Triangle read by rows: T(n,k) number of ways of partitioning the (n+5)-element multiset {1,1,1,1,1,1,2,3,...,n} into exactly k nonempty parts, n >= 0 and 1 <= k <= n + 5. %H A291120 M. Griffiths, I. Mezo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths/griffiths11.html">A generalization of Stirling Numbers of the Second Kind via a special multiset</a>, JIS 13 (2010) #10.2.5 %H A291120 Marko Riedel, <a href="https://math.stackexchange.com/questions/2386814/">Partitions into bounded blocks.</a> %F A291120 Formula including proof is at web link. %e A291120 Triangle begins: %e A291120 1, 2, 2, 1, 1; %e A291120 1, 3, 3, 2, 1, 1; %e A291120 1, 6, 9, 7, 4, 2, 1; %e A291120 1, 13, 30, 29, 18, 9, 4, 1; %e A291120 1, 27, 100, 129, 92, 48, 21, 7, 1; %e A291120 1, 55, 324, 581, 504, 287, 129, 47, 11, 1; %e A291120 1, 111, 1024, 2577, 2834, 1844, 879, 338, 97, 16, 1; %Y A291120 Cf. A241500, A291117, A291118, A291119. %K A291120 nonn,tabf %O A291120 0,2 %A A291120 _Marko Riedel_, Aug 17 2017