A291142 a(n) = (1/4)*A291024(n).
0, 1, 2, 6, 16, 43, 114, 300, 784, 2037, 5266, 13554, 34752, 88799, 226210, 574680, 1456352, 3682409, 9292002, 23403102, 58842416, 147713043, 370262930, 926852868, 2317191024, 5786293597, 14433117938, 35964267594, 89528469088, 222666575815, 553319176770
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
- Index entries for linear recurrences with constant coefficients, signature (4, -2, -4, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x); p = 1 - 3 s^2 + 2 s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291024 *) u/4 (* A291142 *)
-
PARI
concat(0, Vec(x*(1 - 2*x) / (1 - 2*x - x^2)^2 + O(x^40))) \\ Colin Barker, Aug 24 2017
Formula
G.f.: -(((-x + 2 x^2))/(-1 + 2 x + x^2)^2).
a(n) = 4*a(n-1) - 2 a(n-2) - 4*a(n-3) - a(n-4) for n >= 5.
a(n) = (1/4)*A291024(n) for n >= 0.
a(n) = ((1+sqrt(2))^n*(3*sqrt(2) + 2*(-1+sqrt(2))*n) - (1-sqrt(2))^n*(3*sqrt(2) + 2*(1+sqrt(2))*n)) / 16. - Colin Barker, Aug 24 2017
Comments