This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291181 #9 Jul 31 2023 15:56:15 %S A291181 8,80,792,7840,77608,768240,7604792,75279680,745192008,7376640400, %T A291181 73021211992,722835479520,7155333583208,70830500352560, %U A291181 701149669942392,6940666199071360,68705512320771208,680114457008640720,6732439057765635992,66644276120647719200 %N A291181 p-INVERT of the positive integers, where p(S) = 1 - 8*S. %C A291181 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A291181 See A290890 for a guide to related sequences. %H A291181 Clark Kimberling, <a href="/A291181/b291181.txt">Table of n, a(n) for n = 0..1000</a> %H A291181 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10, -1) %F A291181 G.f.: 8/(1 - 10 x + x^2). %F A291181 a(n) = 10*a(n-1) - a(n-2). %F A291181 a(n) = 8*A004189(n+1) for n >= 0. %t A291181 z = 60; s = x/(1 - x)^2; p = 1 - 8 s; %t A291181 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) %t A291181 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291181 *) %t A291181 LinearRecurrence[{10,-1},{8,80},30] (* _Harvey P. Dale_, Jul 31 2023 *) %Y A291181 Cf. A000027, A290890. %K A291181 nonn,easy %O A291181 0,1 %A A291181 _Clark Kimberling_, Aug 19 2017