This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291184 #8 Feb 24 2018 11:53:18 %S A291184 4,21,104,507,2452,11808,56732,272229,1305400,6257355,29988140, %T A291184 143701056,688563508,3299237877,15807943688,75741312603,362900797636, %U A291184 1738768378464,8330956025036,39916050834885,191249400483544,916331219497131,4390407398410844 %N A291184 p-INVERT of the positive integers, where p(S) = 1 - 4*S + 3*S^2. %C A291184 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A291184 See A290890 for a guide to related sequences. %H A291184 Clark Kimberling, <a href="/A291184/b291184.txt">Table of n, a(n) for n = 0..1000</a> %H A291184 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8, -17, 8, -1) %F A291184 G.f.: (4 - 11 x + 4 x^2)/(1 - 8 x + 17 x^2 - 8 x^3 + x^4). %F A291184 a(n) = 8*a(n-1) - 17*a(n-2) + 8*a(n-3) - a(n-4). %t A291184 z = 60; s = x/(1 - x)^2; p = 1 - 4 s + 3 s^2; %t A291184 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) %t A291184 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291184 *) %t A291184 LinearRecurrence[{8,-17,8,-1},{4,21,104,507},30] (* _Harvey P. Dale_, Feb 24 2018 *) %Y A291184 Cf. A000027, A290890. %K A291184 nonn,easy %O A291184 0,1 %A A291184 _Clark Kimberling_, Aug 19 2017