This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291200 #23 Mar 14 2025 04:26:37 %S A291200 1,-1,-1,1,1,-2,-1,4,0,-6,3,7,-8,-6,15,2,-24,9,33,-32,-35,68,20,-114, %T A291200 25,164,-120,-196,285,160,-521,16,796,-423,-1021,1166,999,-2310,-387, %U A291200 3774,-1296,-5194,4608,5735,-10007,-3870,17441,-2750,-25635,17116,31111 %N A291200 Expansion of 1 - x*(1+x)/(1 + x^2*(1-x^2)/(1 - x^3*(1+x^3)/(1 + x^4*(1-x^4)/(1 - x^5*(1+x^5)/(1 - ...))))), a continued fraction. %H A291200 Seiichi Manyama, <a href="/A291200/b291200.txt">Table of n, a(n) for n = 0..1000</a> %H A291200 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MockThetaFunction.html">Mock Theta Function</a> %F A291200 a(n) = (-1)^n * A291193(n). %F A291200 G.f.: 1/nu(-q) where nu(q) is the '3rd-order' mock theta function defined by Sum_{n >= 0} q^(n*(n+1))/((1+q)*(1+q^3)*...*(1+q^(2*n+1))). %F A291200 G.f.: 1/Sum_{n >= 0} q^(n*(n+1))/((1-q)*(1-q^3)*...*(1-q^(2*n+1))). %Y A291200 Cf. A067357, A291193. %K A291200 sign %O A291200 0,6 %A A291200 _Seiichi Manyama_, Aug 20 2017