This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291210 #35 Aug 27 2017 10:55:51 %S A291210 2,4,10,27,80,230,644,1780,4879,13315,36261,98650,268260,729326, %T A291210 1982655,5389579,14650584,39824632,108254817,294267376,799901968, %U A291210 2174359323,5910521810,16066464445,43673178798,118716008808,322703570021,877199250941 %N A291210 Numbers k such that round(k*k^(1/k)) - round((k-1)*(k-1)^(1/(k-1))) > 1. %H A291210 Hugo Pfoertner, <a href="/A291210/b291210.txt">Table of n, a(n) for n = 1..500</a> %F A291210 Lim_{n->infinity} a(n)/a(n-1) = e. %F A291210 It appears that, for most values of n, a(n) = floor(e^(n-1/2) + 7/8) - binomial(n,2). An exception occurs at n = 7; are there more? - _Jon E. Schoenfield_, Aug 22 2017 %F A291210 No more exceptions found through n = 30000. - _Hugo Pfoertner_, Aug 25 2017 %e A291210 Let s(x) = x*x^(1/x); r(x) = round(s(x)); %e A291210 a(1) = 2: %e A291210 s(1) = 1, %e A291210 s(2) = 2.82842712474619...; %e A291210 r(1) = 1, %e A291210 r(2) = 3, %e A291210 r(2) - r(1) = 2; %e A291210 a(2) = 4: %e A291210 s(3) = 4.32674871..., %e A291210 s(4) = 5.6568542...; %e A291210 r(3) = 4, %e A291210 r(4) = 6, %e A291210 r(4) - r(3) = 2; %e A291210 ... %e A291210 a(19) = 108254817: %e A291210 s(108254816) = 108254834.49999999422..., %e A291210 s(108254817) = 108254835.50000000346...; %e A291210 r(108254816) = 108254834, %e A291210 r(108254817) = 108254836, %e A291210 r(108254817) - r(108254816) = 2. %t A291210 f[n_] := Round[n*n^(1/n)]; g[k_] := f[k] > 1 + f[k-1]; A = Select[Range[2, 5000], g]; Do[AppendTo[A, SelectFirst[Floor[E Last@ A] + Range[1000], g]], {n, 19}]; A (* _Giovanni Resta_, Aug 21 2017 *) %Y A291210 Cf. A000227, A291211, A291212. %K A291210 nonn %O A291210 1,1 %A A291210 _Hugo Pfoertner_, Aug 21 2017