A291220 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^4.
1, 1, 2, 4, 7, 15, 27, 55, 101, 199, 370, 718, 1347, 2595, 4898, 9397, 17803, 34066, 64682, 123561, 234917, 448289, 852979, 1626689, 3096695, 5903316, 11241426, 21424775, 40805833, 77759648, 148118585, 282229961, 537636210, 1024373916, 1951472023, 3718072991
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -3, -5, 3, 4, -1, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x^2); p = 1 - s - s^4; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291220 *)
-
PARI
Vec((1 + x - x^2)*(1 - x - x^2 + x^3 + x^4) / ((1 - x - 2*x^2 + x^4)*(1 - 2*x^2 + x^3 + x^4)) + O(x^30)) \\ Colin Barker, Aug 25 2017
Formula
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 5*a(n-4) + 3*a(n-5) + 4*a(n-6) - a(n-7) - a(n-8) for n >= 9.
G.f.: (1 + x - x^2)*(1 - x - x^2 + x^3 + x^4) / ((1 - x - 2*x^2 + x^4)*(1 - 2*x^2 + x^3 + x^4)). - Colin Barker, Aug 25 2017
Comments