A291222 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S^2 - S^3.
0, 1, 1, 3, 5, 9, 19, 30, 66, 106, 223, 379, 753, 1345, 2565, 4723, 8816, 16456, 30480, 57093, 105677, 197751, 366697, 684765, 1272311, 2371846, 4412898, 8218386, 15300891, 28483823, 53042669, 98734485, 183863833, 342263703, 637320032, 1186464528, 2209131168
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 4, 1, -4, 0, 1)
Programs
-
Mathematica
z = 60; s = x/(1 - x^2); p = 1 - s^2 - s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291222 *)
-
PARI
concat(0, Vec(x*(1 + x - x^2) / (1 - 4*x^2 - x^3 + 4*x^4 - x^6) + O(x^40))) \\ Colin Barker, Aug 25 2017
Formula
a(n) = 4*a(n-2) + a(n-3) - 4*a(n-4) + a(n-6) for n >= 7.
G.f.: x*(1 + x - x^2) / (1 - 4*x^2 - x^3 + 4*x^4 - x^6). - Colin Barker, Aug 25 2017
Comments