This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291241 #9 Sep 08 2022 08:46:19 %S A291241 1,2,3,7,10,22,32,67,99,200,299,588,887,1708,2595,4913,7508,14018, %T A291241 21526,39725,61251,111922,173173,313752,486925,875702,1362627,2434747, %U A291241 3797374,6746350,10543724,18636343,29180067,51340988,80521055,141089508,221610563 %N A291241 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^2 + S^3. %C A291241 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A291241 See A291219 for a guide to related sequences. %H A291241 Clark Kimberling, <a href="/A291241/b291241.txt">Table of n, a(n) for n = 0..1000</a> %H A291241 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-3,-4,1,1) %F A291241 G.f.: (-1 - x + 3 x^2 + x^3 - x^4)/((-1 - x + x^2) (-1 + x + x^2)^2). %F A291241 a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 4*a(n-4) + a(n-5) + a(n-6) for n >= 7. %t A291241 z = 60; s = x/(1 - x^2); p = 1 - s - s^2 + s^3; %t A291241 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) %t A291241 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291241 *) %t A291241 LinearRecurrence[{1, 4, -3, -4, 1, 1}, {1, 2, 3, 7, 10, 22}, 40] (* _Vincenzo Librandi_, Aug 29 2017 *) %o A291241 (Magma) I:=[1,2,3,7,10,22]; [n le 6 select I[n] else Self(n-1)+4*Self(n-2)-3*Self(n-3)-4*Self(n-4)+Self(n-5)+Self(n-6): n in [1..40]]; // _Vincenzo Librandi_, Aug 29 2017 %Y A291241 Cf. A000035, A291219. %K A291241 nonn,easy %O A291241 0,2 %A A291241 _Clark Kimberling_, Aug 28 2017