This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291245 #9 Aug 29 2017 03:30:14 %S A291245 5,24,120,599,2990,14925,74500,371876,1856265,9265776,46251265, %T A291245 230868900,1152410620,5752399899,28713814350,143328549649, %U A291245 715442152480,3571217840400,17826174791885,88981552487776,444162405876285,2217091490069376,11066885918992400 %N A291245 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - 5 S + S^2. %C A291245 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A291245 See A291219 for a guide to related sequences. %H A291245 Clark Kimberling, <a href="/A291245/b291245.txt">Table of n, a(n) for n = 0..1000</a> %H A291245 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,1,-5,-1) %F A291245 G.f.: (5 - x - 5*x^2)/(1 - 5*x - x^2 + 5*x^3 + x^4). %F A291245 a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) for n >= 5. %t A291245 z = 60; s = x/(1 - x^2); p = 1 - 5 s - s^2; %t A291245 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) %t A291245 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291245 *) %Y A291245 Cf. A000035, A291219. %K A291245 nonn,easy %O A291245 0,1 %A A291245 _Clark Kimberling_, Aug 28 2017