A291255 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S - 2 S^2)^2.
2, 7, 18, 55, 144, 404, 1060, 2853, 7442, 19573, 50670, 131368, 337622, 866819, 2213650, 5642899, 14332988, 36335548, 91872760, 231875713, 584030738, 1468631153, 3686943130, 9242753104, 23138167146, 57851432575, 144470316562, 360384852207, 898051760168
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 7, -10, -16, 10, 7, -2, -1)
Programs
Formula
G.f.: (2 + 3 x - 10 x^2 - 10 x^3 + 10 x^4 + 3 x^5 - 2 x^6)/(1 - x - 4 x^2 + x^3 + x^4)^2.
a(n) = 2*a(n-1) + 7*a(n-2) - 10*a(n-3) - 16*a(n-4) + 10*a(n-5) + 7*a(n-6) - 2*a(n-7) - a(n-8) for n >= 9.
Comments