This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291260 #10 Aug 22 2017 13:09:34 %S A291260 1,1,1,1,2,2,1,4,12,5,1,8,80,120,14,1,16,576,3904,1680,42,1,32,4352, %T A291260 152064,354560,30240,132,1,64,33792,6492160,99422208,51733504,665280, %U A291260 429,1,128,266240,290488320,31832735744,130292416512,11070525440,17297280,1430 %N A291260 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - 2^k*x/(1 - 4^k*x/(1 - 6^k*x/(1 - 8^k*x/(1 - 10^k*x/(1 - ...)))))). %F A291260 G.f. of column k: 1/(1 - 2^k*x/(1 - 4^k*x/(1 - 6^k*x/(1 - 8^k*x/(1 - 10^k*x/(1 - ...)))))), a continued fraction. %e A291260 Square array begins: %e A291260 : 1, 1, 1, 1, 1, ... %e A291260 : 1, 2, 4, 8, 16, ... %e A291260 : 2, 12, 80, 576, 4352, ... %e A291260 : 5, 120, 3904, 152064, 6492160, ... %e A291260 : 14, 1680, 354560, 99422208, 31832735744, ... %e A291260 : 42, 30240, 51733504, 130292416512, 390365719822336, ... %t A291260 Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(2 i)^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 8}, {n, 0, j}] // Flatten %Y A291260 Columns k=0-2 give A000108, A001813, A002436. %Y A291260 Main diagonal gives A291331. %Y A291260 Cf. A000079 (row 1), A063481 (row 2), A290569, A291261. %K A291260 nonn,tabl %O A291260 0,5 %A A291260 _Ilya Gutkovskiy_, Aug 21 2017