cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291261 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 3^k*x/(1 - 5^k*x/(1 - 7^k*x/(1 - 9^k*x/(1 - ...)))))).

This page as a plain text file.
%I A291261 #10 Aug 23 2017 09:50:59
%S A291261 1,1,1,1,1,2,1,1,4,5,1,1,10,31,14,1,1,28,325,364,42,1,1,82,4159,22150,
%T A291261 5746,132,1,1,244,57349,1790452,2586250,113944,429,1,1,730,818911,
%U A291261 162045118,1691509906,461242900,2719291,1430,1,1,2188,11923525,15520964284,1289803048426,2978600051368,116651486125,75843724,4862
%N A291261 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 3^k*x/(1 - 5^k*x/(1 - 7^k*x/(1 - 9^k*x/(1 - ...)))))).
%F A291261 G.f. of column k: 1/(1 - x/(1 - 3^k*x/(1 - 5^k*x/(1 - 7^k*x/(1 - 9^k*x/(1 - ...)))))), a continued fraction.
%e A291261 Square array begins:
%e A291261    1,     1,        1,           1,              1,                 1,  ...
%e A291261    1,     1,        1,           1,              1,                 1,  ...
%e A291261    2,     4,       10,          28,             82,               244,  ...
%e A291261    5,    31,      325,        4159,          57349,            818911,  ...
%e A291261   14,   364,    22150,     1790452,      162045118,       15520964284,  ...
%e A291261   42,  5746,  2586250,  1691509906,  1289803048426,  1063421637466546,  ...
%t A291261 Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(2 i - 1)^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
%Y A291261 Columns k=0..2 give A000108, A128709, A127823.
%Y A291261 Main diagonal gives A291332.
%Y A291261 Cf. A034472 (row 2), A290569, A291260.
%K A291261 nonn,tabl
%O A291261 0,6
%A A291261 _Ilya Gutkovskiy_, Aug 21 2017