A291265 a(n) = (1/3)*A291232(n).
2, 9, 38, 153, 596, 2268, 8480, 31275, 114086, 412443, 1479926, 5276664, 18711758, 66041901, 232129190, 812934621, 2837740232, 9877082004, 34288573484, 118752490863, 410394698534, 1415492232255, 4873386985130, 16750755602928, 57487476629594, 197013756414033
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6, -7, -6, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x^2); p = (1 - 3 s)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291232 *) u/3 (* A291265 *)
-
PARI
Vec((2 + x)*(1 - 2*x) / (1 - 3*x - x^2)^2 + O(x^30)) \\ Colin Barker, Aug 26 2017
Formula
G.f.: (2 - 3 x - 2 x^2)/(-1 + 3 x + x^2)^2.
a(n) = 6*a(n-1) - 7*a(n-2) -6*a(n-3) - a(n-4) for n >= 5.
a(n) = (((3-sqrt(13))/2)^n*(-3+sqrt(13))*(-39+17*sqrt(13)-39*n) + 2^(-n)*(3+sqrt(13))^(1+n)*(39+17*sqrt(13)+39*n)) / 338. - Colin Barker, Aug 26 2017
Comments