cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291271 The arithmetic function v_4(n,2).

This page as a plain text file.
%I A291271 #22 Apr 12 2025 12:07:38
%S A291271 0,1,0,2,2,3,2,4,4,5,4,6,6,7,6,8,8,9,8,10,10,11,10,12,12,13,12,14,14,
%T A291271 15,14,16,16,17,16,18,18,19,18,20,20,21,20,22,22,23,22,24,24,25,24,26,
%U A291271 26,27,26,28,28,29,28,30,30,31,30,32,32,33,32,34,34
%N A291271 The arithmetic function v_4(n,2).
%C A291271 For any integer n>=7, a(n) is the smallest number of diametrical slices needed to divide two pizzas equally between n-4 people. - _Jamil Silva_, Mar 29 2025
%D A291271 J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).
%H A291271 Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.
%F A291271 Conjecture: a(n) = (n-2-cos(n*Pi)-cos(n*Pi/2))/2. - _Wesley Ivan Hurt_, Oct 02 2017
%F A291271 a(n) = (n-gcd(n,4))/2 = A291330(n)/2. - _Ridouane Oudra_, Dec 28 2024
%F A291271 Sum_{n>=5} (-1)^n/a(n) = 1 - log(2) (A244009). - _Amiram Eldar_, Jan 15 2025
%F A291271 a(2)=a(4)=0, a(3)=1, a(5)=a(6)=2, a(2n+5)=n+2, a(4n+4)=2n, a(4n+6)=2n+2. - _Jamil Silva_, Mar 29 2025
%p A291271 seq((n-gcd(n,4))/2, n=2..80); # _Ridouane Oudra_, Dec 28 2024
%t A291271 v[g_, n_, h_] := (d = Divisors[n]; Max[(Floor[(d - 1 - GCD[d, g])/h] + 1)*n/d]); Table[v[4, n, 2], {n, 2, 70}]
%Y A291271 Cf. A244009, A289435, A289436, A289437, A289438, A289439, A289440, A289441.
%Y A291271 Cf. A291330.
%K A291271 nonn
%O A291271 2,4
%A A291271 _Robert Price_, Aug 21 2017