This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291301 #20 Sep 01 2017 10:53:26 %S A291301 2,11,71,743,6911,117239,2013983,34836479,921086711,33596203871, %T A291301 18754852859999,1306753691335679,2795529813471359,200489563747397471, %U A291301 7143750592470475271,146095655504943513599,161739770170976834876927,543475838478389870591999,317180662337566737324195839 %N A291301 a(n) = prime that is eventually reached when x -> sigma(x)-1 is repeatedly applied to the product of the first n primes, or -1 if no prime is ever reached. %C A291301 A subsequence of A039654. %H A291301 Chai Wah Wu, <a href="/A291301/b291301.txt">Table of n, a(n) for n = 1..35</a> %e A291301 2*3*5*7*11*13 = 30030 -> 96767 -> 111359 -> 117239 takes three steps to reach a prime, so a(6) = 117239. %t A291301 p[n_]:=Times@@Prime/@Range[n]; f[n_]:=DivisorSigma[1,n]-1; %t A291301 a[n_]:=Last[NestWhileList[f,p[n],CompositeQ]]; a/@Range[20] (* _Ivan N. Ianakiev_, Sep 01 2017 *) %o A291301 (Python) %o A291301 from sympy import primorial, isprime, divisor_sigma %o A291301 def A291301(n): %o A291301 m = primorial(n) %o A291301 while not isprime(m): %o A291301 m = divisor_sigma(m) - 1 %o A291301 return m # _Chai Wah Wu_, Aug 31 2017 %Y A291301 Cf. A039654, A000203, A002110, A291302 (number of steps). %K A291301 nonn %O A291301 1,1 %A A291301 _N. J. A. Sloane_, Aug 31 2017 %E A291301 a(10)-a(19) from _Chai Wah Wu_, Aug 31 2017