A291349 Numbers k such that k!4 + 2^8 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).
1, 7, 11, 31, 57, 73, 97, 105, 209, 245, 403, 545, 917, 953, 1177, 1239, 1283, 1627, 2465, 3701, 4479, 4637, 6349, 7983, 11155, 13595, 15547, 17031, 17609, 24087, 24707, 39773, 40407, 63329
Offset: 1
Examples
11!4 + 2^8 = 11*7*3*1 + 256 = 487 is prime, so 11 is in the sequence.
Links
- Henri & Renaud Lifchitz, PRP Records. Search for n!4+256.
- Joe McLean, Interesting Sources of Probable Primes
- OpenPFGW Project, Primality Tester
Programs
-
Mathematica
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^8] &]
Extensions
a(34) from Robert Price, Sep 25 2019
Comments