This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291351 #9 Feb 08 2025 14:29:29 %S A291351 9,13,23,27,33,47,61,113,145,161,191,281,291,417,869,919,1213,1297, %T A291351 1663,2103,2297,2325,3241,3895,4337,6645,7911,8737,13369,13555,19245, %U A291351 34025,47779,48589,54521,91355 %N A291351 Numbers k such that k!4 + 2^10 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662). %C A291351 Corresponding primes are: 1069, 1609, 1515229, 40884559, 4996617649, ... %C A291351 a(37) > 10^5. %C A291351 Terms > 33 correspond to probable primes. %H A291351 Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=n%214%2B4&action=Search">PRP Records. Search for n!4+1024.</a> %H A291351 Joe McLean, <a href="http://web.archive.org/web/20091027034731/http://uk.geocities.com/nassarawa%40btinternet.com/probprim2.htm">Interesting Sources of Probable Primes</a> %H A291351 OpenPFGW Project, <a href="http://sourceforge.net/projects/openpfgw/">Primality Tester</a> %e A291351 13!4 + 2^10 = 13*9*5*1 + 1024 = 1609 is prime, so 13 is in the sequence. %t A291351 MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; %t A291351 Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^10] &] %t A291351 Select[Range[10^3],PrimeQ[Times@@Range[#,1,-4]+2^10]&] (* The program generates the first 16 terms of the sequence. *) (* _Harvey P. Dale_, Feb 08 2025 *) %Y A291351 Cf. A007662, A037082, A084438, A123910, A242994. %K A291351 nonn,more %O A291351 1,1 %A A291351 _Robert Price_, Aug 22 2017 %E A291351 a(36)-a(37) from _Robert Price_, Sep 25 2019