This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291361 #8 Oct 01 2018 21:09:21 %S A291361 7,2,3,2,5,2,7,2,3,2,7,2,7,2,3,2,7,2,7,2,3,2,7,2,5,2,3,2,7,2,7,2,3,2, %T A291361 5,2,7,2,3,2,7,2,7,2,3,2,7,2,7,2,3,2,7,2,5,2,3,2,7,2,7,2,3,2,5,2,7,2, %U A291361 3,2,7,2,7,2,3,2,7,2,7,2,3,2,7,2,5,2,3,2,7,2,7,2,3,2,5,2,7,2,3,2,7,2,7,2,3 %N A291361 The arithmetic function u(n,2,6). %H A291361 Antti Karttunen, <a href="/A291361/b291361.txt">Table of n, a(n) for n = 1..65537</a> %H A291361 Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.3. %t A291361 u[n_, m_, h_] := (d = Divisors[n]; Min[(h*Ceiling[m/d] - h + 1)*d]); Table[u[n, 2, 6], {n, 1, 70}] %o A291361 (PARI) A291361(n, m=2, h=6) = { my(p=0,k); fordiv(n,d,k = d*(h*ceil(m/d) - h + 1); if(!p || (k < p), p = k)); (p); }; \\ _Antti Karttunen_, Oct 01 2018 %Y A291361 Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441. %K A291361 nonn %O A291361 1,1 %A A291361 _Robert Price_, Aug 23 2017 %E A291361 More terms from _Antti Karttunen_, Oct 01 2018