This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291382 #13 Oct 04 2017 11:15:37 %S A291382 2,7,22,70,222,705,2238,7105,22556,71608,227332,721705,2291178, %T A291382 7273743,23091762,73308814,232731578,738846865,2345597854,7446508273, %U A291382 23640235416,75050038224,238259397096,756395887969,2401310279090,7623377054503,24201736119310 %N A291382 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2. %C A291382 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A291382 In the following guide to p-INVERT sequences using s = (1,1,0,0,0,...) = A019590, in some cases t(1,1,0,0,0,...) is a shifted version of the cited sequence: %C A291382 p(S) t(1,1,0,0,0,...) %C A291382 1 - S A000045 (Fibonacci numbers) %C A291382 1 - S^2 A094686 %C A291382 1 - S^3 A115055 %C A291382 1 - S^4 A291379 %C A291382 1 - S^5 A281380 %C A291382 1 - S^6 A281381 %C A291382 1 - 2 S A002605 %C A291382 1 - 3 S A125145 %C A291382 (1 - S)^2 A001629 %C A291382 (1 - S)^3 A001628 %C A291382 (1 - S)^4 A001629 %C A291382 (1 - S)^5 A001873 %C A291382 (1 - S)^6 A001874 %C A291382 1 - S - S^2 A123392 %C A291382 1 - 2 S - S^2 A291382 %C A291382 1 - S - 2 S^2 A124861 %C A291382 1 - 2 S - S^2 A291383 %C A291382 (1 - 2 S)^2 A073388 %C A291382 (1 - 3 S)^2 A291387 %C A291382 (1 - 5 S)^2 A291389 %C A291382 (1 - 6 S)^2 A291391 %C A291382 (1 - S)(1 - 2 S) A291393 %C A291382 (1 - S)(1 - 3 S) A291394 %C A291382 (1 - 2 S)(1 - 3 S) A291395 %C A291382 (1 - S)(1 - 2 S) A291393 %C A291382 (1 - S)(1 - 2 S)(1 - 3 S) A291396 %C A291382 1 - S - S^3 A291397 %C A291382 1 - S^2 - S^3 A291398 %C A291382 1 - S - S^2 - S^3 A186812 %C A291382 1 - S - S^2 - S^3 - S^4 A291399 %C A291382 1 - S^2 - S^4 A291400 %C A291382 1 - S - S^4 A291401 %C A291382 1 - S^3 - S^4 A291402 %C A291382 1 - 2 S^2 - S^4 A291403 %C A291382 1 - S^2 - 2 S^4 A291404 %C A291382 1 - 2 S^2 - 2 S^4 A291405 %C A291382 1 - S^3 - S^6 A291407 %C A291382 (1 - S)(1 - S^2) A291408 %C A291382 (1 - S^2)(1 - S)^2 A291409 %C A291382 1 - S - S^2 - 2 S^3 A291410 %C A291382 1 - 2 S - S^2 + S^3 A291411 %C A291382 1 - S - 2 S^2 + S^3 A291412 %C A291382 1 - 3 S + S^2 + S^3 A291413 %C A291382 1 - 2 S + S^3 A291414 %C A291382 1 - 3 S + S^2 A291415 %C A291382 1 - 4 S + S^2 A291416 %C A291382 1 - 4 S + 2 S^2 A291417 %H A291382 Clark Kimberling, <a href="/A291382/b291382.txt">Table of n, a(n) for n = 0..1000</a> %H A291382 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2, 3, 2, 1) %F A291382 G.f.: (-2 - 3 x - 2 x^2 - x^3)/(-1 + 2 x + 3 x^2 + 2 x^3 + x^4). %F A291382 a(n) = 2*a(n-1) + 3*a(n-2) + 2*a(n-3) + a(n-4) for n >= 5. %t A291382 z = 60; s = x + x^2; p = 1 - 2 s - s^2; %t A291382 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) %t A291382 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291382 *) %Y A291382 Cf. A019590, A290890, A291000, A291219, A291728, A292479, A292480. %K A291382 nonn,easy %O A291382 0,1 %A A291382 _Clark Kimberling_, Sep 04 2017