cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291419 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - a(0)*x^a(0)/(1 - a(1)*x^a(1)/(1 - a(2)*x^a(2)/(1 - ...)))), a continued fraction.

This page as a plain text file.
%I A291419 #4 Aug 23 2017 23:42:44
%S A291419 1,1,2,4,10,24,60,148,376,944,2392,6032,15280,38608,97728,247104,
%T A291419 625312,1581568,4001680,10122624,25610368,64787520,163907904,
%U A291419 414654848,1049031104,2653873152,6713958912,16985280000,42970438432,108708830336,275018076928,695755635328,1760162851328
%N A291419 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - a(0)*x^a(0)/(1 - a(1)*x^a(1)/(1 - a(2)*x^a(2)/(1 - ...)))), a continued fraction.
%e A291419 G.f. = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 24*x^5 + 60*x^6 + ... = 1/(1 - x/(1 - x/(1 - 2*x^2/(1 - 4*x^4/(1 - 10*x^10/(1 - ...)))))).
%Y A291419 Cf. A213411, A213435.
%K A291419 nonn
%O A291419 0,3
%A A291419 _Ilya Gutkovskiy_, Aug 23 2017