cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291442 Matula-Goebel numbers of leaf-balanced trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 36, 37, 40, 41, 44, 45, 47, 48, 49, 50, 53, 54, 55, 59, 60, 61, 62, 64, 66, 67, 71, 72, 75, 79, 80, 81, 83, 88, 89, 90, 91, 93, 96, 97, 99, 100, 103, 108
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2017

Keywords

Comments

An unlabeled rooted tree is leaf-balanced if every branch has the same number of leaves and every non-leaf rooted subtree is also leaf-balanced.

Crossrefs

Programs

  • Mathematica
    nn=2000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    leafcount[n_]:=If[n===1,1,With[{m=primeMS[n]},If[Length[m]===1,leafcount[First[m]],Total[leafcount/@m]]]];
    balQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[SameQ@@leafcount/@m,And@@balQ/@m]]];
    Select[Range[nn],balQ]