This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291447 #15 Aug 26 2017 08:21:35 %S A291447 0,1,0,0,0,1,0,0,0,1,-1,4,0,0,0,1,-3,48,-12,36,0,0,0,1,-7,268,-176, %T A291447 1968,-216,64,0,0,0,1,-15,240,-1580,37140,-9900,10400,-5760,14400,0,0, %U A291447 0,1,-31,4924,-11680,488640,-238680,496320,-639360,5486400,-216000,518400 %N A291447 Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = BernoulliMedian(n). %C A291447 The Bernoulli median numbers are A212196/A181131. See A290694 for further comments. %H A291447 Peter Luschny, <a href="/A291447/a291447.jpg">Illustrating A291447</a> %F A291447 T(n,k) = Numerator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1. %e A291447 Triangle starts: %e A291447 [0, 1] %e A291447 [0, 0, 0, 1] %e A291447 [0, 0, 0, 1, -1, 4] %e A291447 [0, 0, 0, 1, -3, 48, -12, 36] %e A291447 [0, 0, 0, 1, -7, 268, -176, 1968, -216, 64] %e A291447 [0, 0, 0, 1, -15, 240, -1580, 37140, -9900, 10400, -5760, 14400] %e A291447 The first few polynomials are: %e A291447 P_0(x) = x. %e A291447 P_1(x) = (1/3)*x^3. %e A291447 P_2(x) = (4/5)*x^5 - x^4 + (1/3)*x^3. %e A291447 P_3(x) = (36/7)*x^7 - 12*x^6 + (48/5)*x^5 - 3*x^4 + (1/3)*x^3. %e A291447 P_4(x) = 64*x^9 - 216*x^8 + (1968/7)*x^7 - 176*x^6 + (268/5)*x^5 - 7*x^4 +(1/3)*x^3. %e A291447 Evaluated at x = 1 this gives a decomposition of the Bernoulli median numbers: %e A291447 BM(0) = 1 = 1. %e A291447 BM(1) = 1/3 = 1/3. %e A291447 BM(2) = 2/15 = 4/5 - 1 + 1/3. %e A291447 BM(3) = 8/105 = 36/7 - 12 + 48/5 - 3 + 1/3. %e A291447 BM(4) = 8/105 = 64 - 216 + 1968/7 - 176 + 268/5 - 7 + 1/3. %p A291447 # The function BG_row is defined in A290694. %p A291447 seq(BG_row(2, n, "num", "val"), n=0..12); # A212196 %p A291447 seq(BG_row(2, n, "den", "val"), n=0..12); # A181131 %p A291447 seq(print(BG_row(2, n, "num", "poly")), n=0..7); # A291447 (this seq.) %p A291447 seq(print(BG_row(2, n, "den", "poly")), n=0..9); # A291448 %t A291447 T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j, 0, n}]^2, x]; %t A291447 Trow[n_] := CoefficientList[T[n], x] // Numerator; %t A291447 Table[Trow[r], {r, 0, 6}] // Flatten %Y A291447 Cf. A164555/A027642, A212196/A181131, A291449/A291450, A290694/A290695, A291447/A291448. %K A291447 sign,tabf,frac %O A291447 0,12 %A A291447 _Peter Luschny_, Aug 24 2017