cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291447 Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = BernoulliMedian(n).

This page as a plain text file.
%I A291447 #15 Aug 26 2017 08:21:35
%S A291447 0,1,0,0,0,1,0,0,0,1,-1,4,0,0,0,1,-3,48,-12,36,0,0,0,1,-7,268,-176,
%T A291447 1968,-216,64,0,0,0,1,-15,240,-1580,37140,-9900,10400,-5760,14400,0,0,
%U A291447 0,1,-31,4924,-11680,488640,-238680,496320,-639360,5486400,-216000,518400
%N A291447 Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = BernoulliMedian(n).
%C A291447 The Bernoulli median numbers are A212196/A181131. See A290694 for further comments.
%H A291447 Peter Luschny, <a href="/A291447/a291447.jpg">Illustrating A291447</a>
%F A291447 T(n,k) = Numerator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.
%e A291447 Triangle starts:
%e A291447 [0, 1]
%e A291447 [0, 0, 0, 1]
%e A291447 [0, 0, 0, 1, -1, 4]
%e A291447 [0, 0, 0, 1, -3, 48, -12, 36]
%e A291447 [0, 0, 0, 1, -7, 268, -176, 1968, -216, 64]
%e A291447 [0, 0, 0, 1, -15, 240, -1580, 37140, -9900, 10400, -5760, 14400]
%e A291447 The first few polynomials are:
%e A291447 P_0(x) = x.
%e A291447 P_1(x) = (1/3)*x^3.
%e A291447 P_2(x) = (4/5)*x^5 - x^4 + (1/3)*x^3.
%e A291447 P_3(x) = (36/7)*x^7 - 12*x^6 + (48/5)*x^5 - 3*x^4 + (1/3)*x^3.
%e A291447 P_4(x) = 64*x^9 - 216*x^8 + (1968/7)*x^7 - 176*x^6 + (268/5)*x^5 - 7*x^4 +(1/3)*x^3.
%e A291447 Evaluated at x = 1 this gives a decomposition of the Bernoulli median numbers:
%e A291447 BM(0) = 1     =    1.
%e A291447 BM(1) = 1/3   =  1/3.
%e A291447 BM(2) = 2/15  =  4/5 -   1 +    1/3.
%e A291447 BM(3) = 8/105 = 36/7 -  12 +   48/5 -   3 +   1/3.
%e A291447 BM(4) = 8/105 =   64 - 216 + 1968/7 - 176 + 268/5 - 7 + 1/3.
%p A291447 # The function BG_row is defined in A290694.
%p A291447 seq(BG_row(2, n, "num", "val"), n=0..12);        # A212196
%p A291447 seq(BG_row(2, n, "den", "val"), n=0..12);        # A181131
%p A291447 seq(print(BG_row(2, n, "num", "poly")), n=0..7); # A291447 (this seq.)
%p A291447 seq(print(BG_row(2, n, "den", "poly")), n=0..9); # A291448
%t A291447 T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j, 0, n}]^2, x];
%t A291447 Trow[n_] := CoefficientList[T[n], x] // Numerator;
%t A291447 Table[Trow[r], {r, 0, 6}] // Flatten
%Y A291447 Cf. A164555/A027642, A212196/A181131, A291449/A291450, A290694/A290695, A291447/A291448.
%K A291447 sign,tabf,frac
%O A291447 0,12
%A A291447 _Peter Luschny_, Aug 24 2017