This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291448 #11 Aug 26 2017 08:22:27 %S A291448 1,1,1,1,1,3,1,1,1,3,1,5,1,1,1,3,1,5,1,7,1,1,1,3,1,5,1,7,1,1,1,1,1,3, %T A291448 1,1,1,7,1,1,1,11,1,1,1,3,1,5,1,7,1,1,1,11,1,13,1,1,1,3,1,5,1,1,1,1,1, %U A291448 11,1,13,1,1,1,1,1,3,1,5,1,1,1,1,1,11,1,13,1,1 %N A291448 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n,x) such that Integral_{x=0..1} P'(n,x) = BernoulliMedian(n). %C A291448 See A291447 and A290694 for comments. %F A291448 T(n,k) = Denominator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1. %e A291448 Triangle starts: %e A291448 [1, 1] %e A291448 [1, 1, 1, 3] %e A291448 [1, 1, 1, 3, 1, 5] %e A291448 [1, 1, 1, 3, 1, 5, 1, 7] %e A291448 [1, 1, 1, 3, 1, 5, 1, 7, 1, 1] %e A291448 [1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11] %e A291448 [1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13] %p A291448 # See A291447. %t A291448 T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j,0,n}]^2, x]; %t A291448 Trow[n_] := CoefficientList[T[n], x] // Denominator; %t A291448 Table[Trow[r], {r, 0, 7}] // Flatten %Y A291448 Cf. A164555/A027642, A212196/A181131, A291449/A291450, A290694/A290695, A291447/A291448. %K A291448 nonn,tabf,frac %O A291448 0,6 %A A291448 _Peter Luschny_, Aug 24 2017