cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291448 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n,x) such that Integral_{x=0..1} P'(n,x) = BernoulliMedian(n).

This page as a plain text file.
%I A291448 #11 Aug 26 2017 08:22:27
%S A291448 1,1,1,1,1,3,1,1,1,3,1,5,1,1,1,3,1,5,1,7,1,1,1,3,1,5,1,7,1,1,1,1,1,3,
%T A291448 1,1,1,7,1,1,1,11,1,1,1,3,1,5,1,7,1,1,1,11,1,13,1,1,1,3,1,5,1,1,1,1,1,
%U A291448 11,1,13,1,1,1,1,1,3,1,5,1,1,1,1,1,11,1,13,1,1
%N A291448 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n,x) such that Integral_{x=0..1} P'(n,x) = BernoulliMedian(n).
%C A291448 See A291447 and A290694 for comments.
%F A291448 T(n,k) = Denominator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.
%e A291448 Triangle starts:
%e A291448 [1, 1]
%e A291448 [1, 1, 1, 3]
%e A291448 [1, 1, 1, 3, 1, 5]
%e A291448 [1, 1, 1, 3, 1, 5, 1, 7]
%e A291448 [1, 1, 1, 3, 1, 5, 1, 7, 1, 1]
%e A291448 [1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11]
%e A291448 [1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13]
%p A291448 # See A291447.
%t A291448 T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j,0,n}]^2, x];
%t A291448 Trow[n_] := CoefficientList[T[n], x] // Denominator;
%t A291448 Table[Trow[r], {r, 0, 7}] // Flatten
%Y A291448 Cf. A164555/A027642, A212196/A181131, A291449/A291450, A290694/A290695, A291447/A291448.
%K A291448 nonn,tabf,frac
%O A291448 0,6
%A A291448 _Peter Luschny_, Aug 24 2017