A291451 Triangle read by rows, expansion of e.g.f. exp(x*(exp(z)/3 + 2*exp(-z/2)* cos(z*sqrt(3)/2)/3 - 1)), nonzero coefficients of z.
1, 0, 1, 0, 1, 10, 0, 1, 84, 280, 0, 1, 682, 9240, 15400, 0, 1, 5460, 260260, 1401400, 1401400, 0, 1, 43690, 7128576, 99379280, 285885600, 190590400, 0, 1, 349524, 193360720, 6600492080, 42549306800, 76045569600, 36212176000
Offset: 0
Examples
Triangle starts: [1] [0, 1] [0, 1, 10] [0, 1, 84, 280] [0, 1, 682, 9240, 15400] [0, 1, 5460, 260260, 1401400, 1401400] [0, 1, 43690, 7128576, 99379280, 285885600, 190590400]
Crossrefs
Programs
-
Maple
CL := (f, x) -> PolynomialTools:-CoefficientList(f, x): A291451_row := proc(n) exp(x*(exp(z)/3+2*exp(-z/2)*cos(z*sqrt(3)/2)/3-1)): series(%, z, 66): CL((3*n)!*coeff(series(%,z,3*(n+1)),z,3*n),x) end: for n from 0 to 7 do A291451_row(n) od; # Alternative: A291451row := proc(n) local P; P := proc(m, n) option remember; if n = 0 then 1 else add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end: CL(P(3, n), x); seq(%[k+1]/k!, k=0..n) end: # Peter Luschny, Sep 03 2018
-
Mathematica
P[m_, n_] := P[m, n] = If[n == 0, 1, Sum[Binomial[m*n, m*k]*P[m, n - k]*x, {k, 1, n}]]; row[n_] := Module[{cl = CoefficientList[P[3, n], x]}, Table[cl[[k + 1]]/k!, {k, 0, n}]]; Table[row[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 23 2019, after Peter Luschny *)