This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291452 #12 Jul 23 2019 04:23:52 %S A291452 1,0,1,0,1,35,0,1,495,5775,0,1,8255,450450,2627625,0,1,130815, %T A291452 35586525,727476750,2546168625,0,1,2098175,2941884000,181262956875, %U A291452 1932541986375,4509264634875 %N A291452 Triangle read by rows, expansion of e.g.f. exp(x*(cos(z) + cosh(z) - 2)/2), nonzero coefficients of z. %e A291452 Triangle starts: %e A291452 [1] %e A291452 [0, 1] %e A291452 [0, 1, 35] %e A291452 [0, 1, 495, 5775] %e A291452 [0, 1, 8255, 450450, 2627625] %e A291452 [0, 1, 130815, 35586525, 727476750, 2546168625] %e A291452 [0, 1, 2098175, 2941884000, 181262956875, 1932541986375, 4509264634875] %p A291452 CL := (f,x) -> PolynomialTools:-CoefficientList(f,x): %p A291452 A291452_row := proc(n) exp(x*(cos(z)+cosh(z)-2)/2): %p A291452 series(%, z, 88): CL((4*n)!*coeff(series(%,z,4*(n+1)),z,4*n),x) end: %p A291452 for n from 0 to 7 do A291452_row(n) od; %p A291452 # Alternative: %p A291452 A291452row := proc(n) local P; P := proc(m, n) option remember; %p A291452 if n = 0 then 1 else add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end: %p A291452 CL(P(4, n), x); seq(%[k+1]/k!, k=0..n) end: # _Peter Luschny_, Sep 03 2018 %t A291452 P[m_, n_] := P[m, n] = If[n == 0, 1, Sum[Binomial[m*n, m*k]*P[m, n - k]*x, {k, 1, n}]]; %t A291452 row[n_] := Module[{cl = CoefficientList[P[4, n], x]}, Table[cl[[k + 1]]/k!, {k, 0, n}]]; %t A291452 Table[row[n], {n, 0, 6}] // Flatten (* _Jean-François Alcover_, Jul 23 2019, after _Peter Luschny_ *) %Y A291452 Cf. A048993 (m=1), A156289 (m=2), A291451 (m=3), this seq. (m=4). %Y A291452 Diagonal: A000012 (m=1), A001147 (m=2), A025035 (m=3), A025036 (m=4). %Y A291452 Row sums: A000110 (m=1), A005046 (m=2), A291973 (m=3), A291975 (m=4). %Y A291452 Alternating row sums: A000587 (m=1), A260884 (m=2), A291974 (m=3), A291976 (m=4). %K A291452 nonn,tabl %O A291452 0,6 %A A291452 _Peter Luschny_, Sep 07 2017