cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291458 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 4.

Original entry on oeis.org

27720, 60480, 65520, 90720, 98280, 105840, 115920, 120120, 120960, 128520, 131040, 143640, 151200, 163800, 180180, 191520, 205920, 207900, 211680, 218400, 229320, 235620, 241920, 249480, 264600, 272160, 289800, 292320, 312480, 332640, 360360, 372960, 393120, 414960
Offset: 1

Views

Author

Paolo P. Lava, Aug 24 2017

Keywords

Comments

Case k=2 are the admirable numbers (A111592).

Examples

			One of the proper divisors of 27720 is 360 and sigma(27720) - 4*360 = 112320 - 1440 = 110880 = 4*27720.
One of the proper divisors of 115920 is 144 and sigma(115920) - 4*144 = 464256 - 576 = 463680 = 4*115920.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a)-1 do if sigma(n)-h*a[k]=h*n then print(n); break; fi; od; od; end: P(10^9,4);
  • Mathematica
    With[{k = 4}, Select[Range[5 * 10^5], Function[n, AnyTrue[Most@ Divisors@ n, DivisorSigma[1, n] - k # == k n &]]]] (* Michael De Vlieger, Aug 24 2017 *)
    (* or *)
    k=4; Select[Range[5*^5], (t = DivisorSigma[1, #]/k - #; #>t>0 && IntegerQ[t] && Mod[#, t] == 0) &] (* much faster, Giovanni Resta, Aug 25 2017 *)

A291459 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 5.

Original entry on oeis.org

294053760, 575134560, 739458720, 882161280, 1193512320, 1314593280, 1725403680, 2539555200, 2588105520, 2646483840, 2711348640, 3008396160, 3891888000, 4053329280, 4214770560, 4648644000, 4802878080, 5176211040, 5194949760, 5258373120, 6470263800, 6768891360, 7900532640
Offset: 1

Views

Author

Paolo P. Lava, Aug 24 2017

Keywords

Comments

Case k=2 are the admirable numbers (A111592).
Subset of A215264.

Examples

			One of the proper divisors of 294053760 is 2056320 and sigma(294053760) - 5*2056320 = 1480550400 - 10281600 = 1470268800 = 5*294053760.
One of the proper divisors of 3891888000 is 314496 and sigma(3891888000) - 5*314496 = 19461012480 - 1572480 = 19459440000 = 5*3891888000.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a)-1 do if sigma(n)-h*a[k]=h*n then print(n); break; fi; od; od; end: P(10^10,5);
Showing 1-2 of 2 results.