A291459 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 5.
294053760, 575134560, 739458720, 882161280, 1193512320, 1314593280, 1725403680, 2539555200, 2588105520, 2646483840, 2711348640, 3008396160, 3891888000, 4053329280, 4214770560, 4648644000, 4802878080, 5176211040, 5194949760, 5258373120, 6470263800, 6768891360, 7900532640
Offset: 1
Examples
One of the proper divisors of 294053760 is 2056320 and sigma(294053760) - 5*2056320 = 1480550400 - 10281600 = 1470268800 = 5*294053760. One of the proper divisors of 3891888000 is 314496 and sigma(3891888000) - 5*314496 = 19461012480 - 1572480 = 19459440000 = 5*3891888000.
Programs
-
Maple
with(numtheory): P:=proc(q,h) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); for k from 1 to nops(a)-1 do if sigma(n)-h*a[k]=h*n then print(n); break; fi; od; od; end: P(10^10,5);
Comments