This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291464 #14 Sep 11 2023 13:13:53 %S A291464 2,11,13,41,97,277,389,1093,1229,1409,1429,1627,1823,1931,1979,2437, %T A291464 2521,2549,2657,2689,2719,2729,2731,2969,3019,3413,3539,3593,3613, %U A291464 3623,3697,4003,4027,4289,4327,4583,4751,5051,5323,5503,5657,5783,6143,6221,6299,6329 %N A291464 Primes p such that p^3*q^3 + p^2 + q^2 is prime, where q is next prime after p. %H A291464 Robert Israel, <a href="/A291464/b291464.txt">Table of n, a(n) for n = 1..10000</a> %e A291464 a(1) = 2 is prime; 3 is the next prime: 2^3*3^3 + 2^2 + 3^2 = 8*27 + 4 + 9 = 229 that is a prime. %e A291464 a(2) = 11 is prime; 13 is the next prime: 11^3*13^3 + 11^2 + 13^2 = 1331*2197 + 121 + 169 = 2924497 that is a prime. %p A291464 select(p -> andmap(isprime,[p,(p^3*nextprime(p)^3+p^2+nextprime(p)^2)]), [seq(p, p=1..10^4)]); %t A291464 Select[Prime[Range[5000]], PrimeQ[#^3*NextPrime[#]^3 + #^2 + NextPrime[#]^2] &] %t A291464 Select[Partition[Prime[Range[1000]],2,1],PrimeQ[#[[1]]^3 #[[2]]^3+#[[1]]^2+#[[2]]^2]&][[;;,1]] (* _Harvey P. Dale_, Sep 11 2023 *) %o A291464 (PARI) forprime(p=1, 5000, q=nextprime(p+1); p3=p^3; p2=p^2; q3=q^3; q2=q^2; if(ispseudoprime(p3*q3 + p2 + q2), print1(p, ", "))); %o A291464 (Magma) [p: p in PrimesUpTo(5000) | IsPrime(p^3*q^3 + p^2 + q^2) where q is NextPrime(p)]; %Y A291464 Cf. A000040, A001043, A006094, A030078, A096342, A120398, A126148, A152241, A291339, A291374. %K A291464 nonn %O A291464 1,1 %A A291464 _K. D. Bajpai_, Aug 24 2017