A291465 a(n) is the least m >= n for which the complete bipartite graph K_{m,n} has a prime labeling.
1, 2, 4, 9, 14, 25, 36, 45, 52, 61, 62, 89, 90, 95, 98, 123, 140, 155, 162, 171, 172, 177, 216, 217, 226, 243, 244, 255, 264, 283, 318, 321, 340, 345, 374, 383, 384, 395, 400, 403, 422, 449, 456, 465, 478, 531, 546, 551, 552, 557, 562, 567, 594, 599, 604, 605
Offset: 1
Keywords
Examples
A = {1,3} and B = {2,4} is a prime labeling of K_{2,2}, so a(2) = 2.
Links
- Paul Tabatabai, Table of n, a(n) for n = 1..75
- Adam H. Berliner, N. Dean, J. Hook, A. Marr, and A. Mbirika, Coprime and prime labelings of graphs, arXiv:1604.07698 [math.CO], 2016; Journal of Integer Sequences, Vol. 19 (2016), #16.5.8.
Formula
n+1 <= a(n) <= R_{n-1} - n for n > 2, where R_{n-1} is a Ramanujan prime A104272.
Extensions
a(14) onward from Paul Tabatabai, Apr 29 2019
Comments