This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291484 #14 Mar 27 2019 10:01:15 %S A291484 0,1,2,5,12,49,190,1301,7224,69441,495898,6095429,53005700,792143793, %T A291484 8110146070,142633278997,1679413757168,33964965659649,451969255722162, %U A291484 10331348137881349,153288815339260796,3907452790559751857,63949589015139119598,1798373345567005989781,32179694275204166066728 %N A291484 Expansion of e.g.f. arctanh(x)*exp(x). %F A291484 E.g.f.: log((1 + x)/(1 - x))*exp(x)/2. %F A291484 From _Emanuele Munarini_, Dec 16 2017: (Start) %F A291484 a(n) = Sum_{k=0..n/2} binomial(n+1,2*k+1)*((n-2*k)/(n+1))*(2*k)!. %F A291484 a(n+3) - a(n+2) - (n+1)*(n+2)*a(n+1) + (n+1)*(n+2)*a(n) = 1. %F A291484 a(n+4) - 2*a(n+3) - (n^2+5*n+5)*a(n+2) + 2*(n+2)^2*a(n+1) - (n+1)*(n+2)*a(n) = 0. %F A291484 (End) %F A291484 a(n) ~ (n-1)! * (exp(1) - (-1)^n * exp(-1))/2. - _Vaclav Kotesovec_, Dec 16 2017 %e A291484 E.g.f.: A(x) = x/1! + 2*x^2/2! + 5*x^3/3! + 12*x^4/4! + 49*x^5/5! + ... %p A291484 a:=series(arctanh(x)*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # _Paolo P. Lava_, Mar 27 2019 %t A291484 nmax = 24; Range[0, nmax]! CoefficientList[Series[ArcTanh[x] Exp[x], {x, 0, nmax}], x] %t A291484 nmax = 24; Range[0, nmax]! CoefficientList[Series[Log[(1 + x)/(1 - x)] Exp[x]/2, {x, 0, nmax}], x] %t A291484 nmax = 24; Range[0, nmax]! CoefficientList[Series[Sum[x^(2 k + 1)/(2 k + 1), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x] %t A291484 Table[Sum[Binomial[n+1,2k+1](n-2k)/(n+1) (2 k)!, {k,0,n/2}],{n,0,12}] (* _Emanuele Munarini_, Dec 16 2017 *) %o A291484 (Maxima) makelist(sum(binomial(n+1,2*k+1)*(n-2*k)/(n+1)*(2*k)!,k,0,floor(n/2)),n,0,12); /* _Emanuele Munarini_, Dec 16 2017 */ %o A291484 (PARI) first(n) = x='x+O('x^n); Vec(serlaplace(atanh(x)*exp(x)), -n) \\ _Iain Fox_, Dec 16 2017 %Y A291484 Cf. A002104, A002741, A009739, A009832, A010050, A012709, A087208 (first differences), A279927. %K A291484 nonn %O A291484 0,3 %A A291484 _Ilya Gutkovskiy_, Aug 24 2017