This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291488 #5 Feb 16 2025 08:33:50 %S A291488 1,-3,12,-58,318,-1896,11966,-78595,531486,-3674324,25845131, %T A291488 -184348434,1330147092,-9690872427,71189146313,-526703176813, %U A291488 3921274277132,-29354616797397,220824254874928,-1668453804382315,12655766723174710,-96340024533522759,735747052686408916,-5635489764030599334 %N A291488 Expansion of the series reversion of -1 + Product_{k>=1} 1/(1 - x^k)^k. %C A291488 Reversion of g.f. (with constant term omitted) for A000219. %H A291488 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A291488 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a> %H A291488 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A291488 G.f. A(x) satisfies: -1 + Product_{k>=1} 1/(1 - A(x)^k)^k = x. %t A291488 nmax = 24; Rest[CoefficientList[InverseSeries[Series[-1 + Product[1/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x], x]] %t A291488 nmax = 24; Rest[CoefficientList[InverseSeries[Series[-1 + Exp[Sum[DivisorSigma[2, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x], x]] %Y A291488 Cf. A000219, A007312, A050393, A176025. %K A291488 sign %O A291488 1,2 %A A291488 _Ilya Gutkovskiy_, Aug 24 2017