cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291501 The arithmetic function uhat(n,1,7).

Original entry on oeis.org

-41, -41, -41, -41, -41, -41, -41, -41, -45, -50, -55, -60, -65, -70, -75, -80, -85, -90, -95, -100, -105, -110, -115, -120, -125, -130, -135, -140, -145, -150, -155, -160, -165, -170, -175, -180, -185, -190, -195, -200, -205, -210, -215, -220, -225, -230, -235, -240, -245, -250, -255, -260, -265, -270, -275, -280, -285, -290, -295, -300, -305, -310, -315, -320, -325, -330, -335, -340, -345, -350
Offset: 1

Views

Author

Robert Price, Aug 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    delta[r_, k_, d_] := If[r < k, (k - r)*r - (d - 1), If[k < r && r < d, (d - r)*(r - k) - (d - 1), If[k == r && r == d, d - 1, 0]]] uhat[n_, m_, h_] := (dx = Divisors[n]; dmin = n; For[i = 1, i ≤ Length[dx], i++, d = dx[[i]]; k = m - d*Ceiling[m/d] + d; r = h - d*Ceiling[h/d] + d; If[h ≤ Min[k, d - 1], dmin = Min[dmin, n, (h*Ceiling[m/d] - h + 1)*d, h*m - h*h + 1], dmin = Min[dmin, n, h*m - h*h + 1 - delta[r, k, d]]]]; dmin) Table[uhat[n, 1, 7], {n, 1, 70}]