This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291506 #23 Jul 15 2020 11:36:28 %S A291506 0,1,257,1686433,110523752704,43173450975314176, %T A291506 72514862031522895036416,418033821374598847702425993216, %U A291506 7013444132843374500928464765799366656,301905779820559925981495987360836056017534976 %N A291506 a(n) = (n!)^8 * Sum_{i=1..n} 1/i^8. %H A291506 Seiichi Manyama, <a href="/A291506/b291506.txt">Table of n, a(n) for n = 0..83</a> %F A291506 a(0) = 0, a(1) = 1, a(n+1) = (n^8+(n+1)^8)*a(n) - n^16*a(n-1) for n > 0. %F A291506 a(n) ~ 8 * Pi^12 * n^(8*n+4) / (4725 * exp(8*n)). - _Vaclav Kotesovec_, Aug 27 2017 %F A291506 Sum_{n>=0} a(n) * x^n / (n!)^8 = polylog(8,x) / (1 - x). - _Ilya Gutkovskiy_, Jul 15 2020 %t A291506 Table[(n!)^8 * Sum[1/i^8, {i, 1, n}], {n, 0, 15}] (* _Vaclav Kotesovec_, Aug 27 2017 *) %o A291506 (PARI) a(n) = n!^8*sum(i=1, n, 1/i^8); \\ _Michel Marcus_, Aug 26 2017 %Y A291506 Cf. A000254 (k=1), A001819 (k=2), A066989 (k=3), A099827 (k=5), A291456 (k=6), A291505 (k=7), this sequence (k=8), A291507 (k=9), A291508 (k=10). %Y A291506 Column k=8 of A291556. %K A291506 nonn %O A291506 0,3 %A A291506 _Seiichi Manyama_, Aug 25 2017