This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291525 #13 Sep 28 2019 21:16:05 %S A291525 2,3,7,23,29,257,1439,2351,26561,146639,1891949,2062889,341708489, %T A291525 2062232987 %N A291525 a(n) is the largest number in an n-term AP of Chen primes. %C A291525 Zhou proves that a(n) exists for each n, generalizing Green & Tao (2008) from primes to Chen primes and generalizing Green & Tao (2006) from 3-AP to n-AP. Sequence is increasing by definition. %H A291525 B. Green and T. Tao, <a href="http://dx.doi.org/10.5802/jtnb.538">Restriction theory of the Selberg sieve, with applications</a>, J. Théor. Nombres Bordeaux 18:1 (2006), pp. 147-182. <a href="http://arXiv.org/abs/math/0405581">arXiv:math/0405581</a> [math.NT] %H A291525 Ben Green and Terence Tao, <a href="http://arXiv.org/abs/math/0404188">The primes contain arbitrarily long arithmetic progressions</a>, Annals of Mathematics 167 (2008), pp. 481-547. arXiv:math/0404188 [math.NT], 2004-2007. %H A291525 Binbin Zhou, <a href="https://www.impan.pl/en/publishing-house/journals-and-series/acta-arithmetica/all/138/4/82619/the-chen-primes-contain-arbitrarily-long-arithmetic-progressions">The Chen primes contain arbitrarily long arithmetic progressions</a>, Acta Arithmetica 138 (2009), pp. 301-315. %e A291525 3, 5, 7 = a(3) %e A291525 5, 11, 17, 23 = a(4) %e A291525 5, 11, 17, 23, 29 = a(5) %e A291525 107, 137, 167, 197, 227, 257 = a(6) %e A291525 179, 389, 599, 809, 1019, 1229, 1439 = a(7) %e A291525 881, 1091, 1301, 1511, 1721, 1931, 2141, 2351 = a(8) %e A291525 4721, 7451, 10181, 12911, 15641, 18371, 21101, 23831, 26561 = a(9) %e A291525 122069, 124799, 127529, 130259, 132989, 135719, 138449, 141179, 143909, 146639 = a(10) %e A291525 182549, 353489, 524429, 695369, 866309, 1037249, 1208189, 1379129, 1550069, 1721009, 1891949 = a(11) %e A291525 182549, 353489, 524429, 695369, 866309, 1037249, 1208189, 1379129, 1550069, 1721009, 1891949, 2062889 = a(12) %e A291525 205492409, 216843749, 228195089, 239546429, 250897769, 262249109, 273600449, 284951789, 296303129, 307654469, 319005809, 330357149, 341708489 = a(13) %e A291525 19712507, 176829467, 333946427, 491063387, 648180347, 805297307, 962414267, 1119531227, 1276648187, 1433765147, 1590882107, 1747999067, 1905116027, 2062232987 = a(14) %o A291525 (PARI) primorial(n)=vecprod(primes(primepi(n))); %o A291525 listChen(lim)=my(v=List([2]), semi=List(), L=lim+2, p=3); forprime(q=3, L\3, forprime(r=3, min(L\q, q), listput(semi, q*r))); semi=Set(semi); forprime(q=7, lim, if(setsearch(semi, q+2), listput(v, q))); forprime(q=5, L, if(q-p==2, listput(v, p)); p=q); Set(v) %o A291525 chen=listChen(1e6); \\ Increase as needed to find more terms %o A291525 a(n,startAt=n)=n--; my(div=lcm(primorial(n+1),n)); for(i=startAt,#chen, for(j=1,i-n, my(d=chen[i]-chen[j],g); if(d%div,next); g=d/n; forstep(k=chen[j]+g, chen[i]-g, g, if(!setsearch(chen,k), next(2))); return(chen[i]))) %Y A291525 Cf. A109611, A005115. %K A291525 nonn,more %O A291525 1,1 %A A291525 _Charles R Greathouse IV_, Aug 25 2017 %E A291525 a(14) from _Charles R Greathouse IV_, Sep 06 2017