This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291527 #64 Aug 31 2017 04:19:11 %S A291527 1,-1,0,1,1,4,-10,-4,9,-1,-44,75,224,-299,-180,225,1,408,92,-7400, %T A291527 4758,19592,-15876,-12600,11025,-1,-3688,-23387,194160,155702, %U A291527 -1313312,264586,2445840,-1289925,-1323000,893025,1,33212,804210,-3980044,-20402105,64915224,74573980,-279362392,-18229761,414859500,-144802350,-196465500,108056025,-1,-298932,-22347185,33998224,1349961795,-1942776004,-12484642765,21458573952,32679754381,-72263858940,-19224079875,92046754800,-20560114575,-39332393100,18261468225,1,2690416,581249144,2783246128,-71371497796,-59230867280,1313526021896,-606679979408,-7350770598874,7512502827344,15289334428104,-22529210886000,-9997446759300,25906255174800,-3292683193800,-10226422206000,4108830350625 %N A291527 E.g.f. A(x,k) satisfies: sn(A(x,k), k) = k * sn(x,k), where sn(,) and cn(,) are Jacobi Elliptic functions. %C A291527 Compare to the law of sines of a spherical triangle: sin(A)/sin(a) = k. %C A291527 The series reversion of e.g.f. A(x,k) wrt x equals A(k*x, 1/k) / k. %H A291527 Paul D. Hanna, <a href="/A291527/b291527.txt">Table of n, a(n) for n = 1..900 of rows 1..30 read as a flattened table.</a> %F A291527 E.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1)/(2*n-1)!, satisfies: %F A291527 (1) sn(A(x,k), k) = k * sn(x,k), %F A291527 (2) cn(A(x,k), k) = dn(x,k), %F A291527 (3) dn(A(k*x,1/k)/k, k) = cn(x,k), %F A291527 (4) A(k*A(x,k), 1/k) = k*x, %F A291527 (5) A(A(x,1/k)/k, k) = x/k, %F A291527 (6) sn( A^r(x,k), k) = k^r * sn(x,k) where A^r(x,k) = A( A^{r-1}(x,k), k) is the r-th iteration of A(x,k) wrt x, with A^0(x,k) = x. %F A291527 Row sums of n-th row equals zero for n>1. %F A291527 T(n+1,1) = (-1)^n for n>=0. %F A291527 T(n+1, 2*n+1) = ( (2*n)! / (n!*2^n) )^2 = A001818(n) for n>=0. %e A291527 This irregular triangle of coefficients T(n,r) in A(x,k) begins: %e A291527 [1], %e A291527 [-1, 0, 1], %e A291527 [1, 4, -10, -4, 9], %e A291527 [-1, -44, 75, 224, -299, -180, 225], %e A291527 [1, 408, 92, -7400, 4758, 19592, -15876, -12600, 11025], %e A291527 [-1, -3688, -23387, 194160, 155702, -1313312, 264586, 2445840, -1289925, -1323000, 893025], %e A291527 [1, 33212, 804210, -3980044, -20402105, 64915224, 74573980, -279362392, -18229761, 414859500, -144802350, -196465500, 108056025], %e A291527 [-1, -298932, -22347185, 33998224, 1349961795, -1942776004, -12484642765, 21458573952, 32679754381, -72263858940, -19224079875, 92046754800, -20560114575, -39332393100, 18261468225], %e A291527 [1, 2690416, 581249144, 2783246128, -71371497796, -59230867280, 1313526021896, -606679979408, -7350770598874, 7512502827344, 15289334428104, -22529210886000, -9997446759300, 25906255174800, -3292683193800, -10226422206000, 4108830350625], ... %e A291527 where e.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1) / (2*n-1)!. %e A291527 E.g.f.: A(x,k) = k*x + (k^5 - k)*x^3/3! + %e A291527 (9*k^9 - 4*k^7 - 10*k^5 + 4*k^3 + k)*x^5/5! + %e A291527 (225*k^13 - 180*k^11 - 299*k^9 + 224*k^7 + 75*k^5 - 44*k^3 - k)*x^7/7! + %e A291527 (11025*k^17 - 12600*k^15 - 15876*k^13 + 19592*k^11 + 4758*k^9 - 7400*k^7 + 92*k^5 + 408*k^3 + k)*x^9/9! + %e A291527 (893025*k^21 - 1323000*k^19 - 1289925*k^17 + 2445840*k^15 + 264586*k^13 - 1313312*k^11 + 155702*k^9 + 194160*k^7 - 23387*k^5 - 3688*k^3 - k)*x^11/11! + %e A291527 (108056025*k^25 - 196465500*k^23 - 144802350*k^21 + 414859500*k^19 - 18229761*k^17 - 279362392*k^15 + 74573980*k^13 + 64915224*k^11 - 20402105*k^9 - 3980044*k^7 + 804210*k^5 + 33212*k^3 + k)*x^13/13! + %e A291527 (18261468225*k^29 - 39332393100*k^27 - 20560114575*k^25 + 92046754800*k^23 - 19224079875*k^21 - 72263858940*k^19 + 32679754381*k^17 + 21458573952*k^15 - 12484642765*k^13 - 1942776004*k^11 + 1349961795*k^9 + 33998224*k^7 - 22347185*k^5 - 298932*k^3 - k)*x^15/15! +... %e A291527 such that %e A291527 (1) sn(A(x,k), k) = k * sn(x,k), %e A291527 (2) cn(A(x,k), k) = dn(x,k), %e A291527 (3) dn(A(k*x,1/k)/k, k) = cn(x,k), %e A291527 (4) A(k * A(x,k), 1/k) = k * x, %e A291527 (5) A(A(x,1/k) / k, k) = x / k. %e A291527 RELATED SERIES. %e A291527 Let A^r(x,k) denote the r-th iteration of A(x,k) wrt x, then %e A291527 sn( A^r(x,k), k) = k^r * sn(x,k). %e A291527 For example, sn( A(A(x,k), k), k) = k^2 * sn(x,k), where %e A291527 A(A(x,k), k) = k^2*x + (k^8 + k^6 - k^4 - k^2)*x^3/3! + (9*k^14 + 6*k^12 - k^10 - 20*k^8 - 9*k^6 + 14*k^4 + k^2)*x^5/5! + (225*k^20 + 135*k^18 - 180*k^16 - 300*k^14- 434*k^12 + 210*k^10 + 524*k^8 - 44*k^6 - 135*k^4 - k^2)*x^7/7! + (11025*k^26 + 6300*k^24 - 13230*k^22 - 23940*k^20 - 2961*k^18 + 6552*k^16 + 18332*k^14 + 22712*k^12 - 17825*k^10 - 12852*k^8 + 4658*k^6 + 1228*k^4 + k^2)*x^9/9! + (893025*k^32 + 496125*k^30 - 1393875*k^28 - 2433375*k^26 - 335475*k^24 + 3138345*k^22 + 866745*k^20 - 82995*k^18 + 562771*k^16 - 2154361*k^14 - 783465*k^12 + 1194707*k^10 + 201343*k^8 - 158445*k^6 - 11069*k^4 - k^2)*x^11/11! +... %e A291527 Related Jacobi elliptic functions sn(,), cn(,), and dn(,) begin: %e A291527 sn(x,k) = x + (-k^2 - 1)*x^3/3! + (k^4 + 14*k^2 + 1)*x^5/5! + (-k^6 - 135*k^4 - 135*k^2 - 1)*x^7/7! + (k^8 + 1228*k^6 + 5478*k^4 + 1228*k^2 + 1)*x^9/9! + (-k^10 - 11069*k^8 - 165826*k^6 - 165826*k^4 - 11069*k^2 - 1)*x^11/11! + (k^12 + 99642*k^10 + 4494351*k^8 + 13180268*k^6 + 4494351*k^4 + 99642*k^2 + 1)*x^13/13! + (-k^14 - 896803*k^12 - 116294673*k^10 - 834687179*k^8 - 834687179*k^6 - 116294673*k^4 - 896803*k^2 - 1)*x^15/15! +... %e A291527 where sn(x,k) = sn(A(x,k), k)/k. %e A291527 cn(x,k) = 1 - x^2/2! + (4*k^2 + 1)*x^4/4! + (-16*k^4 - 44*k^2 - 1)*x^6/6! + (64*k^6 + 912*k^4 + 408*k^2 + 1)*x^8/8! + (-256*k^8 - 15808*k^6 - 30768*k^4 - 3688*k^2 - 1)*x^10/10! + (1024*k^10 + 259328*k^8 + 1538560*k^6 + 870640*k^4 + 33212*k^2 + 1)*x^12/12! + (-4096*k^12 - 4180992*k^10 - 65008896*k^8 - 106923008*k^6 - 22945056*k^4 - 298932*k^2 - 1)*x^14/14! +... %e A291527 where cn(x,k) = dn(A(k*x,1/k)/k, k), %e A291527 and cn(2*A(x,k), k) = -1 + 2*dn(x,k)^2 / (1 - k^6*sn(x,k)^4). %e A291527 dn(x,k) = 1 - k^2*x^2/2! + (k^4 + 4*k^2)*x^4/4! + (-k^6 - 44*k^4 - 16*k^2)*x^6/6! + (k^8 + 408*k^6 + 912*k^4 + 64*k^2)*x^8/8! + (-k^10 - 3688*k^8 -30768*k^6 - 15808*k^4 - 256*k^2)*x^10/10! + (k^12 + 33212*k^10 + 870640*k^8 + 1538560*k^6 + 259328*k^4 + 1024*k^2)*x^12/12! + (-k^14 - 298932*k^12 - 22945056*k^10 - 106923008*k^8 - 65008896*k^6 - 4180992*k^4 - 4096*k^2)*x^14/14! +... %e A291527 where dn(x,k) = cn(A(x,k),k). %o A291527 (PARI) /* Find A such that sn(A,k) = k * sn(x,k) */ %o A291527 {T(n,r) = my(A=x,V=[k],S=x,C=1-x^2/2); %o A291527 for(m=0,n, V=concat(V,[0,0]); A = x*Ser(V); %o A291527 S = intformal(C*subst(C,x,A)); %o A291527 C = 1 - intformal(S*subst(C,x,A)); %o A291527 V[#V] = -polcoeff(subst(S,x,A)/S,#V-1,x);); %o A291527 (2*n-1)!*polcoeff(V[2*n-1],2*r-1,k)} %o A291527 for(n=1,10, for(r=1,2*n-1, print1(T(n,r),", "));print("")) %o A291527 (PARI) {T(n, k) = my(A, m); if( n<0 || k>=(m=2*n+1), 0, A = intformal(1 / sqrt((1 - x^2) * (1 - y^2*x^2) + x*O(x^m))); A = subst(A, x, y * serreverse(A)); m! * polcoeff( polcoeff(A, m), 2*k+1))}; /* _Michael Somos_, Aug 27 2017 */ %Y A291527 Cf. A060627, A002754, A060628, A001818. %Y A291527 Cf. A291560. %K A291527 sign,tabf %O A291527 1,6 %A A291527 _Paul D. Hanna_, Aug 25 2017