This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291534 #33 Feb 16 2025 08:33:50 %S A291534 1,1,0,-3,-7,-4,24,85,99,-215,-1196,-2100,1420,17512,42160,9477, %T A291534 -252073,-815965,-736456,3365813,15248793,22861712,-37036000, %U A291534 -273657748,-575046252,180950476,4658415696,13042693000,6717278152,-73400374512,-275797704864,-321427878811,1012425395135 %N A291534 Expansion of the series reversion of x/((1 + x)*(1 - x^2)). %C A291534 Reversion of g.f. for the canonical enumeration of integers (A001057). %H A291534 Seiichi Manyama, <a href="/A291534/b291534.txt">Table of n, a(n) for n = 1..1000</a> %H A291534 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A291534 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a> %H A291534 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A291534 G.f. A(x) satisfies: A(x)/((1 + A(x))*(1 - A(x)^2)) = x. %F A291534 a(n) = hypergeom([(1 - n)/2, 1 - n/2, -n], [1, 3/2], 1). - _Vladimir Reshetnikov_, Oct 15 2018 %F A291534 From _Vladimir Reshetnikov_, Oct 18 2018: (Start) %F A291534 G.f.: 2^(1/3)*(6 - 8*x - 2^(1/3)*t^2)/(6*sqrt(x)*t), where t = (3*sqrt(12 - 39*x + 96*x^2) - (9 + 16*x)*sqrt(x))^(1/3). %F A291534 D-finite with recurrence: 64*n*(n + 1)*(2*n + 1)*a(n) - 4*(n + 1)*(37*n^2 + 134*n + 120)*a(n + 1) + (n + 2)*(55*n^2 + 235*n + 240)*a(n + 2) - 2*(6*n + 21)*(n + 2)*(n + 3)*a(n + 3) = 0. (End) %F A291534 a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(2*n,n-1-k). - _Seiichi Manyama_, Aug 05 2023 %F A291534 From _Seiichi Manyama_, Aug 11 2023: (Start) %F A291534 a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(2*n+k+1,n) / (2*n+k+1). %F A291534 a(n) = (1/n) * Sum_{k=0..n-1} (-2)^k * binomial(n,k) * binomial(3*n-k,n-1-k). (End) %t A291534 Rest[CoefficientList[InverseSeries[Series[x/((1 + x) (1 - x^2)), {x, 0, 33}], x], x]] %t A291534 Table[HypergeometricPFQ[{(1 - n)/2, 1 - n/2, -n}, {1, 3/2}, 1], {n, 1, 33}] (* _Vladimir Reshetnikov_, Oct 15 2018 *) %o A291534 (PARI) a(n) = sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(2*n, n-1-k))/n; \\ _Seiichi Manyama_, Aug 05 2023 %Y A291534 Cf. A001057, A001764, A036765. %Y A291534 Cf. A363982, A364051, A364764. %K A291534 sign %O A291534 1,4 %A A291534 _Ilya Gutkovskiy_, Aug 25 2017