cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291537 a(n) = 8^n - 3*2^n + 5.

This page as a plain text file.
%I A291537 #11 Feb 16 2025 08:33:50
%S A291537 7,57,493,4053,32677,261957,2096773,16776453,134216197,1073738757,
%T A291537 8589928453,68719464453,549755789317,4398046461957,35184371990533,
%U A291537 281474976514053,2251799813292037,18014398508695557,144115188074283013,1152921504603701253,9223372036848484357
%N A291537 a(n) = 8^n - 3*2^n + 5.
%C A291537 Number of dominating sets in the n X n X n complete tripartite graph.
%H A291537 G. C. Greubel, <a href="/A291537/b291537.txt">Table of n, a(n) for n = 1..1000</a>
%H A291537 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteTripartiteGraph.html">Complete Tripartite Graph</a>
%H A291537 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a>
%H A291537 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-26,16).
%F A291537 a(n) = 8^n - 3*2^n + 5.
%F A291537 a(n) = 11*a(n-1) - 26*a(n-2) + 16*a(n-3).
%F A291537 G.f.: x*(7 - 20*x + 48*x^2)/(1 - 11*x + 26*x^2 - 16*x^3).
%F A291537 E.g.f.: exp(8*x) - 3*exp(2*x) + 5*exp(x) - 3. - _G. C. Greubel_, Aug 26 2017
%t A291537 Table[8^n - 3 2^n + 5, {n, 20}]
%t A291537 LinearRecurrence[{11, -26, 16}, {7, 57, 493}, 20]
%t A291537 CoefficientList[Series[(-7 + 20 x - 48 x^2)/(-1 + 11 x - 26 x^2 + 16 x^3), {x, 0, 20}], x]
%o A291537 (PARI) x='x+O('x^50); Vec(x*(7 - 20*x + 48*x^2)/(1 - 11*x + 26*x^2 - 16*x^3)) \\ _G. C. Greubel_, Aug 26 2017
%K A291537 nonn,easy
%O A291537 1,1
%A A291537 _Eric W. Weisstein_, Aug 25 2017