This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291543 #15 Feb 16 2025 08:33:50 %S A291543 1,2,2,3,6,3,4,11,11,4,5,18,48,18,5,6,27,109,109,27,6,7,38,218,632, %T A291543 218,38,7,8,51,405,1649,1649,405,51,8,9,66,724,4192,10130,4192,724,66, %U A291543 9,10,83,1277,10889,34801,34801,10889,1277,83,10 %N A291543 Array read by antidiagonals: T(m,n) = number of maximal irredundant sets in the lattice (rook) graph K_m X K_n. %C A291543 Maximal irredundant sets can be either dominating or not. The dominating maximal irredundant sets are the minimal dominating sets (A290632). The non-dominating maximal irredundant sets are those irredundant sets that have exactly one empty row and one empty column and at least one row and one column with more than one element. See note in A290586 for some additional details. %H A291543 Andrew Howroyd, <a href="/A291543/b291543.txt">Table of n, a(n) for n = 1..1275</a> %H A291543 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIrredundantSet.html">Maximal Irredundant Set</a> %H A291543 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a> %F A291543 T(m,n) = A290632(m, n) + Sum_{k=2..m-2} Sum_{j=2..m-k} binomial(m,k) * binomial(n,j) * k! * A008299(n-j,k-1) * j! * stirling2(m-k,j-1). %e A291543 Array begins: %e A291543 ========================================================= %e A291543 m\n| 1 2 3 4 5 6 7 8 %e A291543 ---|----------------------------------------------------- %e A291543 1 | 1 2 3 4 5 6 7 8... %e A291543 2 | 2 6 11 18 27 38 51 66... %e A291543 3 | 3 11 48 109 218 405 724 1277... %e A291543 4 | 4 18 109 632 1649 4192 10889 29480... %e A291543 5 | 5 27 218 1649 10130 34801 116772 402673... %e A291543 6 | 6 38 405 4192 34801 194292 856225 3804880... %e A291543 7 | 7 51 724 10889 116772 856225 4730810 24810465... %e A291543 8 | 8 66 1277 29480 402673 3804880 24810465 145114944... %e A291543 ... %t A291543 T32[n_, k_] := n^k + k^n - Min[n, k]!*StirlingS2[Max[n, k], Min[n, k]]; %t A291543 T99[n_, k_] := Sum[(-1)^i*Binomial[n, i]*Sum[(-1)^j*((k - i - j)^(n - i)/(j!*(k - i - j)!)), {j, 0, k - i}], {i, 0, k}]; %t A291543 T[m_, n_] /; n >= m := T32[m, n] + Sum[Sum[Binomial[m, k]*Binomial[n, j]*k!*T99[n - j, k - 1]*j!*StirlingS2[m - k, j - 1], {j, 2, m - k}], {k, 2, m - 2}]; T[m_, n_] /; n < m := T[n, m]; %t A291543 Table[T[m - n + 1, n], {m, 1, 10}, {n, 1, m}] // Flatten(* _Jean-François Alcover_, Nov 01 2017, after _Andrew Howroyd_ *) %o A291543 (PARI) \\ here s(n,k) is A008299(n,k) and b(m,n,1) is A290632(m,n). %o A291543 s(n, k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); %o A291543 b(m, n, x) = m^n*x^n + n^m*x^m - if(n<=m, n!*x^m*stirling(m, n, 2), m!*x^n*stirling(n, m, 2)); %o A291543 p(m, n, x)={sum(k=2, m-2, sum(j=2, m-k, binomial(m, k) * binomial(n, j) * k! * s(n-j, k-1) * j! * stirling(m-k, j-1, 2) * x^(m+n-j-k) ))} %o A291543 T(m, n) = b(m, n, 1) + p(m, n, 1); %Y A291543 Main diagonal is A291104. %Y A291543 Cf. A008299, A290586, A290632, A290818. %K A291543 nonn,tabl %O A291543 1,2 %A A291543 _Andrew Howroyd_, Aug 25 2017