A291545 a(n) is the smallest integer k > n such that (k+1)(k+2)...(2k-n)/(k(k-1)...(k-n+1)) is an integer.
6, 6, 9, 10, 16, 16, 27, 27, 28, 28, 95, 95, 96, 96, 121, 121, 122, 122, 123, 123, 124, 124, 125, 125, 126, 126, 537, 537, 538, 538, 539, 539, 540, 540, 905, 905, 906, 906, 1149, 1149, 1150, 1150, 1349, 1349, 1350, 1350, 1351, 1351, 1352, 1352
Offset: 1
Keywords
Examples
If n = 1, for k = 2, 3, 4, 5, the fraction is respectively equal to 3/2, (4*5)/3, (5*6*7)/4, (6*7*8*9)/5 but for k = 6, the quotient is (7*8*9*10*11)/6 = 9240 and so a(1) = 6.
Links
- Michel Marcus, Table of n, a(n) for n = 1..200
- Paul Erdös, Problem 556, Crux Mathematicorum, Vol. 7 (Nov. 81), p. 282.
Programs
-
PARI
a(n)=my(k=n+1,t=(n+2)/k!); while(denominator(t)>1, k++; t*=(2*k-n)*(2*k-n-1)*(k-n)/k^2); k \\ Charles R Greathouse IV, Aug 26 2017
Formula
a(n) = min_{k > n} : (k!/(k-n)!) | ((2k-n)!/k!). - Jon E. Schoenfield, Aug 28 2017
Extensions
Corrected and extended by Charles R Greathouse IV, Aug 26 2017
Comments