cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291553 Column 3 of A060244.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 13, 22, 35, 54, 81, 121, 174, 250, 352, 491, 675, 924, 1246, 1674, 2226, 2944, 3862, 5046, 6541, 8449, 10846, 13869, 17641, 22365, 28214, 35485, 44443, 55494, 69036, 85650, 105894, 130594, 160561, 196923, 240847, 293907, 357722, 434477, 526448
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 26 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; col = 3; Flatten[{0, 0, CoefficientList[Coefficient[Normal[Series[Product[Product[1/(1 - x^(i - j)*y^j), {j, 0, i}], {i, 2, nmax + col}], {x, 0, col}, {y, 0, nmax}]], x^col], y]}]
    nmax = 50; Rest[CoefficientList[Series[(x^3 * (1 + x - x^4))/((1-x)^2 * (1+x) * (1 + x + x^2)) / QPochhammer[x], {x, 0, nmax}], x]]
    Table[Sum[(Floor[k/2] - Floor[(k-1)/3]) * PartitionsP[n-k], {k, 3, n}], {n, 1, 50}]

Formula

G.f.: x^3 * (1 + x - x^4) / ((1 - x)^2 * (1 + x) * (1 + x + x^2)) * Product_{k>=1} 1/(1 - x^k).
a(n) = Sum_{k=3..n} (floor(k/2) - floor((k-1)/3)) * A000041(n-k).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*Pi^2).
a(n) ~ n * A000041(n) / Pi^2.