cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291563 Number of partitions of 2n into two prime parts or two nonprime parts.

This page as a plain text file.
%I A291563 #17 Mar 05 2021 16:50:28
%S A291563 1,1,1,2,4,3,4,6,6,6,8,9,9,9,11,9,13,15,10,14,16,14,16,19,18,17,21,18,
%T A291563 20,25,18,24,27,19,26,28,25,27,32,26,28,35,29,29,39,30,32,38,30,37,41,
%U A291563 35,37,42,38,41,47,40,40,54,38,42,53,39,48,52,46,46
%N A291563 Number of partitions of 2n into two prime parts or two nonprime parts.
%H A291563 Alois P. Heinz, <a href="/A291563/b291563.txt">Table of n, a(n) for n = 1..20000</a>
%H A291563 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A291563 a(n) = Sum_{i=1..n} [A010051(i) = A010051(2n-i)], where [] is the Iverson bracket.
%F A291563 a(n) = n - A291564(n).
%p A291563 a:= n-> n-add(`if`(isprime(n+i) xor isprime(n-i), 1, 0), i=1..n-1):
%p A291563 seq(a(n), n=1..80);  # _Alois P. Heinz_, Mar 05 2021
%t A291563 Table[Sum[KroneckerDelta[(PrimePi[k] - PrimePi[k - 1]), (PrimePi[2 n - k] - PrimePi[2 n - 1 - k])], {k, n}], {n, 80}]
%Y A291563 Cf. A010051, A291564.
%K A291563 nonn,easy
%O A291563 1,4
%A A291563 _Wesley Ivan Hurt_, Oct 20 2017