This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291564 #21 Mar 05 2021 16:43:56 %S A291564 0,1,2,2,1,3,3,2,3,4,3,3,4,5,4,7,4,3,9,6,5,8,7,5,7,9,6,10,9,5,13,8,6, %T A291564 15,9,8,12,11,7,14,13,7,14,15,6,16,15,10,19,13,10,17,16,12,17,15,10, %U A291564 18,19,6,23,20,10,25,17,14,21,22,17,20,19,12,23,24 %N A291564 Number of partitions of 2n into two parts such that one part is prime and the other is nonprime. %H A291564 Alois P. Heinz, <a href="/A291564/b291564.txt">Table of n, a(n) for n = 1..20000</a> %H A291564 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A291564 a(n) = n - Sum_{i=1..n} [A010051(i) = A010051(2n-i)], where [] is the Iverson bracket. %F A291564 a(n) = n - A291563(n). %p A291564 a:= n-> add(`if`(isprime(n+i) xor isprime(n-i), 1, 0), i=1..n-1): %p A291564 seq(a(n), n=1..80); # _Alois P. Heinz_, Mar 05 2021 %t A291564 Table[n - Sum[KroneckerDelta[(PrimePi[k] - PrimePi[k - 1]), (PrimePi[2 n - k] - PrimePi[2 n - 1 - k])], {k, n}], {n, 80}] %Y A291564 Cf. A010051, A291563. %K A291564 nonn,look,easy %O A291564 1,3 %A A291564 _Wesley Ivan Hurt_, Oct 20 2017