cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291564 Number of partitions of 2n into two parts such that one part is prime and the other is nonprime.

This page as a plain text file.
%I A291564 #21 Mar 05 2021 16:43:56
%S A291564 0,1,2,2,1,3,3,2,3,4,3,3,4,5,4,7,4,3,9,6,5,8,7,5,7,9,6,10,9,5,13,8,6,
%T A291564 15,9,8,12,11,7,14,13,7,14,15,6,16,15,10,19,13,10,17,16,12,17,15,10,
%U A291564 18,19,6,23,20,10,25,17,14,21,22,17,20,19,12,23,24
%N A291564 Number of partitions of 2n into two parts such that one part is prime and the other is nonprime.
%H A291564 Alois P. Heinz, <a href="/A291564/b291564.txt">Table of n, a(n) for n = 1..20000</a>
%H A291564 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A291564 a(n) = n - Sum_{i=1..n} [A010051(i) = A010051(2n-i)], where [] is the Iverson bracket.
%F A291564 a(n) = n - A291563(n).
%p A291564 a:= n-> add(`if`(isprime(n+i) xor isprime(n-i), 1, 0), i=1..n-1):
%p A291564 seq(a(n), n=1..80);  # _Alois P. Heinz_, Mar 05 2021
%t A291564 Table[n - Sum[KroneckerDelta[(PrimePi[k] - PrimePi[k - 1]), (PrimePi[2 n - k] - PrimePi[2 n - 1 - k])], {k, n}], {n, 80}]
%Y A291564 Cf. A010051, A291563.
%K A291564 nonn,look,easy
%O A291564 1,3
%A A291564 _Wesley Ivan Hurt_, Oct 20 2017